Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1572079919314415983910 ~2003
1572132491314426498310 ~2003
1572157799314431559910 ~2003
1572176003314435200710 ~2003
1572268499314453699910 ~2003
1572270671314454134310 ~2003
15723899712515823953711 ~2005
1572415811314483162310 ~2003
1572470051314494010310 ~2003
1572493453943496071910 ~2004
1572551759314510351910 ~2003
1572573311314514662310 ~2003
1572576179314515235910 ~2003
157265068710379494534312 ~2007
1572701771314540354310 ~2003
15727208037863604015111 ~2006
1572747251314549450310 ~2003
1572749771314549954310 ~2003
1572861299314572259910 ~2003
1572872417943723450310 ~2004
1572905759314581151910 ~2003
1572925691314585138310 ~2003
15729667973775120312911 ~2005
1573070399314614079910 ~2003
1573209433943925659910 ~2004
Exponent Prime Factor Digits Year
1573226411314645282310 ~2003
1573234583314646916710 ~2003
1573257659314651531910 ~2003
1573267691314653538310 ~2003
15733401012517344161711 ~2005
15734540932202835730311 ~2005
1573473983314694796710 ~2003
1573505399314701079910 ~2003
1573519691314703938310 ~2003
1573631051314726210310 ~2003
1573723799314744759910 ~2003
15737285211258982816911 ~2004
1573874579314774915910 ~2003
1573991819314798363910 ~2003
1574124551314824910310 ~2003
1574196671314839334310 ~2003
1574267951314853590310 ~2003
15745096791259607743311 ~2004
15745306932519249108911 ~2005
1574537351314907470310 ~2003
15745382811259630624911 ~2004
1574717999314943599910 ~2003
1574774483314954896710 ~2003
15748177371259854189711 ~2004
1574908661944945196710 ~2004
Exponent Prime Factor Digits Year
15749089873779781568911 ~2005
1574952517944971510310 ~2004
15750908776300363508111 ~2006
1575094273945056563910 ~2004
1575141371315028274310 ~2003
1575221423315044284710 ~2003
1575229091315045818310 ~2003
1575252671315050534310 ~2003
1575253633945152179910 ~2004
1575262499315052499910 ~2003
1575314759315062951910 ~2003
1575331091315066218310 ~2003
1575461339315092267910 ~2003
1575501671315100334310 ~2003
1575528263315105652710 ~2003
1575534071315106814310 ~2003
1575586763315117352710 ~2003
1575605021945363012710 ~2004
1575608579315121715910 ~2003
15756648372521063739311 ~2005
15757099396302839756111 ~2006
1575753611315150722310 ~2003
1575780971315156194310 ~2003
1575796451315159290310 ~2003
1575868319315173663910 ~2003
Exponent Prime Factor Digits Year
1575890999315178199910 ~2003
1575900239315180047910 ~2003
1575905939315181187910 ~2003
1575932531315186506310 ~2003
1576047743315209548710 ~2003
1576236071315247214310 ~2003
1576284263315256852710 ~2003
1576473011315294602310 ~2003
15767135391261370831311 ~2004
1576727963315345592710 ~2003
1576815083315363016710 ~2003
1576856051315371210310 ~2003
15770038671261603093711 ~2004
1577015339315403067910 ~2003
1577222831315444566310 ~2003
1577314597946388758310 ~2004
15773713914101165616711 ~2006
1577403671315480734310 ~2003
1577414711315482942310 ~2003
15774180535047737769711 ~2006
1577446151315489230310 ~2003
15775035891262002871311 ~2004
1577503979315500795910 ~2003
1577589131315517826310 ~2003
1577599571315519914310 ~2003
Home
4.724.182 digits
e-mail
25-04-13