Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1346111891269222378310 ~2002
1346166623269233324710 ~2002
1346180399269236079910 ~2002
1346216171269243234310 ~2002
1346295701807777420710 ~2003
13463285471346328547111 ~2004
1346346917807808150310 ~2003
13463808435385523372111 ~2005
1346393641807836184710 ~2003
1346463311269292662310 ~2002
1346476811269295362310 ~2002
1346507951269301590310 ~2002
1346542943269308588710 ~2002
1346597099269319419910 ~2002
1346635379269327075910 ~2002
1346655683269331136710 ~2002
1346659103269331820710 ~2002
1346678831269335766310 ~2002
1346712617808027570310 ~2003
1346718179269343635910 ~2002
13468481471346848147111 ~2004
1346872823269374564710 ~2002
1346878763269375752710 ~2002
1346946011269389202310 ~2002
1346946059269389211910 ~2002
Exponent Prime Factor Digits Year
1347000131269400026310 ~2002
1347113543269422708710 ~2002
13471319873502543166311 ~2005
1347136493808281895910 ~2003
13471441812155430689711 ~2005
1347154031269430806310 ~2002
134719171110777533688112 ~2006
1347235391269447078310 ~2002
1347241319269448263910 ~2002
13472443991347244399111 ~2004
1347296243269459248710 ~2002
1347316331269463266310 ~2002
13473171073233561056911 ~2005
1347320963269464192710 ~2002
1347323111269464622310 ~2002
1347341459269468291910 ~2002
1347365843269473168710 ~2002
1347375863269475172710 ~2002
1347393623269478724710 ~2002
1347411179269482235910 ~2002
1347448799269489759910 ~2002
1347474959269494991910 ~2002
1347565211269513042310 ~2002
1347573371269514674310 ~2002
1347610151269522030310 ~2002
Exponent Prime Factor Digits Year
1347645023269529004710 ~2002
1347645791269529158310 ~2002
1347701759269540351910 ~2002
1347732563269546512710 ~2002
13477800473504228122311 ~2005
1347780491269556098310 ~2002
13478118074582560143911 ~2005
13478373891078269911311 ~2004
1347886451269577290310 ~2002
1347897959269579591910 ~2002
1347918983269583796710 ~2002
1347950917808770550310 ~2003
1348039919269607983910 ~2002
134807160129927189542312 ~2007
1348082663269616532710 ~2002
1348106423269621284710 ~2002
1348146301808887780710 ~2003
1348213703269642740710 ~2002
1348319411269663882310 ~2002
13483639491078691159311 ~2004
1348427903269685580710 ~2002
1348472459269694491910 ~2002
1348593479269718695910 ~2002
1348618261809170956710 ~2003
1348623443269724688710 ~2002
Exponent Prime Factor Digits Year
1348642811269728562310 ~2002
1348684979269736995910 ~2002
1348686191269737238310 ~2002
1348700701809220420710 ~2003
13487557911079004632911 ~2004
1348760051269752010310 ~2002
13487658671348765867111 ~2004
1348782251269756450310 ~2002
1348810871269762174310 ~2002
13488289631348828963111 ~2004
1348958711269791742310 ~2002
1349036063269807212710 ~2002
13490479131888667078311 ~2004
1349053991269810798310 ~2002
13490611011079248880911 ~2004
1349085301809451180710 ~2003
1349098043269819608710 ~2002
1349132957809479774310 ~2003
1349141903269828380710 ~2002
13491629991079330399311 ~2004
1349192423269838484710 ~2002
1349295263269859052710 ~2002
13493059131889028278311 ~2004
1349324981809594988710 ~2003
1349368453809621071910 ~2003
Home
4.843.404 digits
e-mail
25-06-08