Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
18145095731088705743911 ~2004
18145211232903233796911 ~2006
1814545079362909015910 ~2003
1814549651362909930310 ~2003
1814568851362913770310 ~2003
1814607143362921428710 ~2003
1814689379362937875910 ~2003
1814696483362939296710 ~2003
1814742971362948594310 ~2003
18149545011088972700711 ~2004
1814958851362991770310 ~2003
1815062891363012578310 ~2003
1815121559363024311910 ~2003
18151400293993308063911 ~2006
18151632371089097942311 ~2004
1815212219363042443910 ~2003
18152239871815223987111 ~2005
18152624593267472426311 ~2006
18153548411089212904711 ~2004
1815432959363086591910 ~2003
1815473039363094607910 ~2003
1815609623363121924710 ~2003
1815618719363123743910 ~2003
1815632999363126599910 ~2003
1815683651363136730310 ~2003
Exponent Prime Factor Digits Year
1815847751363169550310 ~2003
1815852119363170423910 ~2003
1816010951363202190310 ~2003
1816037711363207542310 ~2003
18160522331089631339911 ~2004
1816082483363216496710 ~2003
1816099751363219950310 ~2003
1816100519363220103910 ~2003
1816108379363221675910 ~2003
1816161383363232276710 ~2003
1816176179363235235910 ~2003
18161962273269153208711 ~2006
1816326119363265223910 ~2003
1816482263363296452710 ~2003
18164844975449453491111 ~2006
18165673094359761541711 ~2006
18165909011089954540711 ~2004
1816614479363322895910 ~2003
18166528132543313938311 ~2005
1816736123363347224710 ~2003
1816785059363357011910 ~2003
18168136191453450895311 ~2005
18169784211090187052711 ~2004
1817015891363403178310 ~2003
1817029163363405832710 ~2003
Exponent Prime Factor Digits Year
18170580771090234846311 ~2004
1817073971363414794310 ~2003
18171188713270813967911 ~2006
1817158643363431728710 ~2003
1817161403363432280710 ~2003
1817194559363438911910 ~2003
18172144331090328659911 ~2004
1817268899363453779910 ~2003
18172725292544181540711 ~2005
1817288591363457718310 ~2003
1817339351363467870310 ~2003
1817348579363469715910 ~2003
1817405699363481139910 ~2003
1817417603363483520710 ~2003
18175942391817594239111 ~2005
1817676491363535298310 ~2003
18177365231817736523111 ~2005
18178047715816975267311 ~2006
18178872374362929368911 ~2006
1817932139363586427910 ~2003
18179656911454372552911 ~2005
18179894171090793650311 ~2004
1818002339363600467910 ~2003
18180215215817668867311 ~2006
1818067403363613480710 ~2003
Exponent Prime Factor Digits Year
18180855171454468413711 ~2005
1818101891363620378310 ~2003
1818102983363620596710 ~2003
1818104819363620963910 ~2003
1818158063363631612710 ~2003
18181650731090899043911 ~2004
181817504934908960940912 ~2008
181833270710546329700712 ~2007
1818450503363690100710 ~2003
1818499379363699875910 ~2003
18186200871454896069711 ~2005
18186544931091192695911 ~2004
18186642971091198578311 ~2004
1818668231363733646310 ~2003
18187158611091229516711 ~2004
1818832679363766535910 ~2003
18188615895456584767111 ~2006
18189789011091387340711 ~2004
18190334832910453572911 ~2006
18190639911455251192911 ~2005
1819173299363834659910 ~2003
1819173311363834662310 ~2003
18192059811091523588711 ~2004
1819216583363843316710 ~2003
1819346219363869243910 ~2003
Home
4.724.182 digits
e-mail
25-04-13