Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1296544451259308890310 ~2002
1296575963259315192710 ~2002
1296584363259316872710 ~2002
1296604091259320818310 ~2002
1296697043259339408710 ~2002
1296708299259341659910 ~2002
12967461894149587804911 ~2005
1296793343259358668710 ~2002
1296793931259358786310 ~2002
1296802163259360432710 ~2002
12968426991037474159311 ~2004
1296883223259376644710 ~2002
12969083691037526695311 ~2004
1296915551259383110310 ~2002
1296916393778149835910 ~2003
1296925583259385116710 ~2002
12969604371037568349711 ~2004
12970071671297007167111 ~2004
1297010063259402012710 ~2002
1297039511259407902310 ~2002
1297085651259417130310 ~2002
1297183403259436680710 ~2002
1297199219259439843910 ~2002
1297218683259443736710 ~2002
1297231739259446347910 ~2002
Exponent Prime Factor Digits Year
12972920115448626446311 ~2005
1297364357778418614310 ~2003
1297382699259476539910 ~2002
1297383383259476676710 ~2002
1297418519259483703910 ~2002
1297492499259498499910 ~2002
1297531139259506227910 ~2002
12976149712335706947911 ~2005
1297622471259524494310 ~2002
12976672491816734148711 ~2004
1297691099259538219910 ~2002
1297717979259543595910 ~2002
1297738679259547735910 ~2002
12977863791038229103311 ~2004
1297804619259560923910 ~2002
1297826281778695768710 ~2003
1297835219259567043910 ~2002
12978382515191353004111 ~2005
1297840403259568080710 ~2002
12978533091038282647311 ~2004
1297922603259584520710 ~2002
1297985459259597091910 ~2002
1298060473778836283910 ~2003
1298063471259612694310 ~2002
1298069351259613870310 ~2002
Exponent Prime Factor Digits Year
1298095391259619078310 ~2002
12981024191298102419111 ~2004
12981116091038489287311 ~2004
1298111723259622344710 ~2002
1298112001778867200710 ~2003
12981138533894341559111 ~2005
1298116811259623362310 ~2002
1298163457778898074310 ~2003
1298175563259635112710 ~2002
1298186243259637248710 ~2002
12981947691817472676711 ~2004
1298216063259643212710 ~2002
1298227013778936207910 ~2003
1298242943259648588710 ~2002
12984151335972709611911 ~2006
12984295011038743600911 ~2004
1298521019259704203910 ~2002
1298604479259720895910 ~2002
1298659403259731880710 ~2002
1298668643259733728710 ~2002
12987429473116983072911 ~2005
12987865391298786539111 ~2004
1298787863259757572710 ~2002
12988745832078199332911 ~2004
1298898959259779791910 ~2002
Exponent Prime Factor Digits Year
1298927417779356450310 ~2003
1298959331259791866310 ~2002
12989598972078335835311 ~2004
12990096311299009631111 ~2004
1299064463259812892710 ~2002
1299104591259820918310 ~2002
1299106439259821287910 ~2002
1299122339259824467910 ~2002
1299128279259825655910 ~2002
12991596891818823564711 ~2004
1299211139259842227910 ~2002
12992872335197148932111 ~2005
1299316019259863203910 ~2002
1299368053779620831910 ~2003
12994203293118608789711 ~2005
1299490103259898020710 ~2002
1299531179259906235910 ~2002
1299538873779723323910 ~2003
12995478911299547891111 ~2004
1299556691259911338310 ~2002
1299564971259912994310 ~2002
1299596891259919378310 ~2002
12996934635198773852111 ~2005
1299702841779821704710 ~2003
12997094093119302581711 ~2005
Home
4.933.056 digits
e-mail
25-07-20