Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
13729647711098371816911 ~2004
1373002451274600490310 ~2002
1373066963274613392710 ~2002
1373115179274623035910 ~2002
1373136113823881667910 ~2004
1373152919274630583910 ~2002
1373181263274636252710 ~2002
1373292131274658426310 ~2002
1373319263274663852710 ~2002
13734114912472140683911 ~2005
1373415443274683088710 ~2002
1373493119274698623910 ~2002
1373566583274713316710 ~2002
1373582939274716587910 ~2002
1373673863274734772710 ~2002
13736840691098947255311 ~2004
1373697179274739435910 ~2002
1373755693824253415910 ~2004
1373814059274762811910 ~2002
1373815043274763008710 ~2002
13738870491099109639311 ~2004
1373894243274778848710 ~2002
13739541771099163341711 ~2004
1374105961824463576710 ~2004
1374167699274833539910 ~2002
Exponent Prime Factor Digits Year
1374175559274835111910 ~2002
13741780933023191804711 ~2005
1374246851274849370310 ~2002
1374274799274854959910 ~2002
1374330263274866052710 ~2002
1374462443274892488710 ~2002
1374468923274893784710 ~2002
1374513071274902614310 ~2002
1374538657824723194310 ~2004
1374646151274929230310 ~2002
13746912672199506027311 ~2005
1374742619274948523910 ~2002
1374780443274956088710 ~2002
1374811271274962254310 ~2002
13749097971099927837711 ~2004
13749212271099936981711 ~2004
1374943763274988752710 ~2002
1374946763274989352710 ~2002
1374992771274998554310 ~2002
1374998543274999708710 ~2002
1375071023275014204710 ~2002
13750735192475132334311 ~2005
1375077299275015459910 ~2002
13750848891100067911311 ~2004
1375120283275024056710 ~2002
Exponent Prime Factor Digits Year
1375122803275024560710 ~2002
1375128263275025652710 ~2002
1375191431275038286310 ~2002
1375231103275046220710 ~2002
1375337423275067484710 ~2002
1375346363275069272710 ~2002
1375442903275088580710 ~2002
1375466951275093390310 ~2002
1375482131275096426310 ~2002
1375579703275115940710 ~2002
1375579979275115995910 ~2002
1375604003275120800710 ~2002
1375650371275130074310 ~2002
13756876791100550143311 ~2004
13757697891100615831311 ~2004
13757769733026709340711 ~2005
1375785863275157172710 ~2002
1375812419275162483910 ~2002
1376058119275211623910 ~2002
1376066603275213320710 ~2002
1376108603275221720710 ~2002
1376114279275222855910 ~2002
1376248823275249764710 ~2002
1376268851275253770310 ~2002
13763045571101043645711 ~2004
Exponent Prime Factor Digits Year
1376320853825792511910 ~2004
1376342003275268400710 ~2002
1376374151275274830310 ~2002
1376449553825869731910 ~2004
13764601034679964350311 ~2005
13764630791376463079111 ~2004
1376572751275314550310 ~2002
13766325591101306047311 ~2004
1376673131275334626310 ~2002
13766985711101358856911 ~2004
1376705357826023214310 ~2004
13767343991376734399111 ~2004
1376735663275347132710 ~2002
1376789279275357855910 ~2002
1376928313826156987910 ~2004
1376950517826170310310 ~2004
1376965481826179288710 ~2004
1376997551275399510310 ~2002
1377009779275401955910 ~2002
1377029963275405992710 ~2002
1377072083275414416710 ~2002
1377086219275417243910 ~2002
1377128891275425778310 ~2002
1377164003275432800710 ~2002
1377255851275451170310 ~2002
Home
4.843.404 digits
e-mail
25-06-08