Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1204082543240816508710 ~2002
1204139099240827819910 ~2002
12041798632890031671311 ~2005
1204189319240837863910 ~2002
1204206539240841307910 ~2002
1204228703240845740710 ~2002
1204246679240849335910 ~2002
1204270307963416245710 ~2003
1204318079240863615910 ~2002
12043516371686092291911 ~2004
120437953143598539022312 ~2007
1204395443240879088710 ~2002
1204397543240879508710 ~2002
1204404011240880802310 ~2002
1204412711240882542310 ~2002
1204417811240883562310 ~2002
1204420163240884032710 ~2002
1204491059963592847310 ~2003
1204504019240900803910 ~2002
1204555337722733202310 ~2003
1204561499240912299910 ~2002
1204572947963658357710 ~2003
12045741131927318580911 ~2004
12047174992891321997711 ~2005
12047392093614217627111 ~2005
Exponent Prime Factor Digits Year
1204746479240949295910 ~2002
1204756277722853766310 ~2003
1204769759240953951910 ~2002
12047928113132461308711 ~2005
1204805363240961072710 ~2002
1204807139240961427910 ~2002
1204939871240987974310 ~2002
1204963139240992627910 ~2002
1204992479240998495910 ~2002
1205032601723019560710 ~2003
1205035823241007164710 ~2002
1205204543241040908710 ~2002
1205215499241043099910 ~2002
12053550712169639127911 ~2004
1205373881723224328710 ~2003
1205385733723231439910 ~2003
12054095771928655323311 ~2004
1205410883241082176710 ~2002
1205413091241082618310 ~2002
1205486783241097356710 ~2002
1205543093723325855910 ~2003
1205569061723341436710 ~2003
1205619011241123802310 ~2002
1205767991241153598310 ~2002
12058371371929339419311 ~2004
Exponent Prime Factor Digits Year
12058869911929419185711 ~2004
1205907803241181560710 ~2002
12059122618682568279311 ~2006
1205960963241192192710 ~2002
1205965697723579418310 ~2003
1205968919241193783910 ~2002
1205984519241196903910 ~2002
1205991719241198343910 ~2002
1205992751241198550310 ~2002
1206000203241200040710 ~2002
1206058657723635194310 ~2003
1206065303241213060710 ~2002
1206085871241217174310 ~2002
1206099743241219948710 ~2002
1206116617723669970310 ~2003
1206119699241223939910 ~2002
12061212431206121243111 ~2004
1206169259241233851910 ~2002
1206190031241238006310 ~2002
1206212603241242520710 ~2002
1206235001723741000710 ~2003
1206239159241247831910 ~2002
1206239843241247968710 ~2002
1206280541723768324710 ~2003
1206289013723773407910 ~2003
Exponent Prime Factor Digits Year
1206332399241266479910 ~2002
1206371591965097272910 ~2003
1206419723241283944710 ~2002
12064454412654179970311 ~2004
1206467159241293431910 ~2002
1206498311241299662310 ~2002
1206524243241304848710 ~2002
1206543743241308748710 ~2002
1206567023241313404710 ~2002
1206606623241321324710 ~2002
1206623233723973939910 ~2003
1206668471241333694310 ~2002
1206691823241338364710 ~2002
1206718031241343606310 ~2002
1206721643241344328710 ~2002
1206794399241358879910 ~2002
1206811883241362376710 ~2002
1206845459241369091910 ~2002
120688141922206618109712 ~2007
12069280972896627432911 ~2005
1206936611241387322310 ~2002
1206943571241388714310 ~2002
1207000139241400027910 ~2002
1207003943241400788710 ~2002
1207008503241401700710 ~2002
Home
4.933.056 digits
e-mail
25-07-20