Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
15148745471514874547111 ~2004
1514955839302991167910 ~2003
1514963231302992646310 ~2003
1514985359302997071910 ~2003
1515214691303042938310 ~2003
1515240017909144010310 ~2004
1515424811303084962310 ~2003
1515500711303100142310 ~2003
1515548603303109720710 ~2003
1515562739303112547910 ~2003
1515571133909342679910 ~2004
1515595331303119066310 ~2003
1515599003303119800710 ~2003
1515628253909376951910 ~2004
1515654971303130994310 ~2003
15156745511515674551111 ~2004
1515701777909421066310 ~2004
1515772631303154526310 ~2003
1515805919303161183910 ~2003
15158273332122158266311 ~2005
1515886357909531814310 ~2004
1516019951303203990310 ~2003
1516040171303208034310 ~2003
1516141103303228220710 ~2003
15161436973638744872911 ~2005
Exponent Prime Factor Digits Year
1516150019303230003910 ~2003
1516154879303230975910 ~2003
1516201523303240304710 ~2003
15162267918794115387911 ~2006
1516283459303256691910 ~2003
1516301117909780670310 ~2004
1516324091303264818310 ~2003
1516334641909800784710 ~2004
1516357523303271504710 ~2003
1516386923303277384710 ~2003
1516468511303293702310 ~2003
1516475483303295096710 ~2003
15164924691213193975311 ~2004
1516582559303316511910 ~2003
1516585403303317080710 ~2003
15165890471516589047111 ~2004
1516602121909961272710 ~2004
1516616399303323279910 ~2003
15166617473639988192911 ~2005
1516663859303332771910 ~2003
1516678343303335668710 ~2003
1516694843303338968710 ~2003
1516703003303340600710 ~2003
15167126278493590711311 ~2006
1516767779303353555910 ~2003
Exponent Prime Factor Digits Year
15168162771213453021711 ~2004
1516831931303366386310 ~2003
15168579414853945411311 ~2006
1516874039303374807910 ~2003
1516874477910124686310 ~2004
1516916183303383236710 ~2003
1516958279303391655910 ~2003
1516969933910181959910 ~2004
1516975391303395078310 ~2003
1516975643303395128710 ~2003
1517082659303416531910 ~2003
1517114699303422939910 ~2003
1517149163303429832710 ~2003
1517187671303437534310 ~2003
1517204399303440879910 ~2003
1517229803303445960710 ~2003
1517268653910361191910 ~2004
1517430923303486184710 ~2003
1517433143303486628710 ~2003
1517454839303490967910 ~2003
1517465699303493139910 ~2003
1517502683303500536710 ~2003
1517597951303519590310 ~2003
1517666651303533330310 ~2003
1517750099303550019910 ~2003
Exponent Prime Factor Digits Year
1517750831303550166310 ~2003
1517757233910654339910 ~2004
1517841959303568391910 ~2003
1517874833910724899910 ~2004
15179945475161181459911 ~2006
1518068663303613732710 ~2003
1518236183303647236710 ~2003
15182452791214596223311 ~2004
15182456271214596501711 ~2004
15182971132125615958311 ~2005
1518359291303671858310 ~2003
1518379451303675890310 ~2003
1518462371303692474310 ~2003
15184999671214799973711 ~2004
1518520499303704099910 ~2003
15185280471214822437711 ~2004
151854960727030183004712 ~2007
1518559313911135587910 ~2004
1518582113911149267910 ~2004
1518675737911205442310 ~2004
1518691799303738359910 ~2003
15187091033948643667911 ~2005
1518763583303752716710 ~2003
1518811991303762398310 ~2003
1518825137911295082310 ~2004
Home
4.843.404 digits
e-mail
25-06-08