Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1852477391370495478310 ~2003
1852495919370499183910 ~2003
18525563931111533835911 ~2005
1852579031370515806310 ~2003
18526167131111570027911 ~2005
1852638323370527664710 ~2003
1852717319370543463910 ~2003
18527392611111643556711 ~2005
1852762511370552502310 ~2003
185277763910746110306312 ~2007
1852896431370579286310 ~2003
1852911191370582238310 ~2003
18529226991482338159311 ~2005
1852945511370589102310 ~2003
1852957019370591403910 ~2003
1853049239370609847910 ~2003
18532187771111931266311 ~2005
1853230199370646039910 ~2003
1853248079370649615910 ~2003
18532617194447828125711 ~2006
1853315111370663022310 ~2003
1853485043370697008710 ~2003
18534969479267484735111 ~2007
18535025271482802021711 ~2005
18535186971482814957711 ~2005
Exponent Prime Factor Digits Year
1853556203370711240710 ~2003
1853582231370716446310 ~2003
1853629751370725950310 ~2003
1853708459370741691910 ~2003
1853722943370744588710 ~2003
1853798819370759763910 ~2003
1853835083370767016710 ~2003
18538379391483070351311 ~2005
18538454532966152724911 ~2006
18538701771483096141711 ~2005
1853929163370785832710 ~2003
1853987711370797542310 ~2003
1853994731370798946310 ~2003
1854040091370808018310 ~2003
1854247091370849418310 ~2003
18542546832966807492911 ~2006
18543667331112620039911 ~2005
1854369131370873826310 ~2003
18543740993337873378311 ~2006
18543915771112634946311 ~2005
1854404243370880848710 ~2003
1854418019370883603910 ~2003
1854422159370884431910 ~2003
1854597791370919558310 ~2003
1854657251370931450310 ~2003
Exponent Prime Factor Digits Year
1854680963370936192710 ~2003
18546864731112811883911 ~2005
1854690611370938122310 ~2003
185471147310015441954312 ~2007
1854761159370952231910 ~2003
1854792311370958462310 ~2003
1854979943370995988710 ~2003
1855000463371000092710 ~2003
18550429331113025759911 ~2005
18550903731113054223911 ~2005
1855105391371021078310 ~2003
18551307011113078420711 ~2005
18551943892597272144711 ~2005
1855421699371084339910 ~2003
1855523591371104718310 ~2003
1855527983371105596710 ~2003
1855553891371110778310 ~2003
18557225531113433531911 ~2005
18557838734453881295311 ~2006
1855803179371160635910 ~2003
1855830659371166131910 ~2003
1855858619371171723910 ~2003
1855897919371179583910 ~2003
1855923851371184770310 ~2003
1855955243371191048710 ~2003
Exponent Prime Factor Digits Year
1855978703371195740710 ~2003
1855985399371197079910 ~2003
18560082371113604942311 ~2005
1856027279371205455910 ~2003
1856066951371213390310 ~2003
1856082191371216438310 ~2003
18561417672969826827311 ~2006
1856159003371231800710 ~2003
1856171519371234303910 ~2003
18562238411113734304711 ~2005
1856244251371248850310 ~2003
18562746892598784564711 ~2005
1856334719371266943910 ~2003
1856348951371269790310 ~2003
1856389763371277952710 ~2003
1856524331371304866310 ~2003
1856651711371330342310 ~2003
1856658299371331659910 ~2003
1856788691371357738310 ~2003
18568182611114090956711 ~2005
1856913251371382650310 ~2003
1856946599371389319910 ~2003
18569854996313750696711 ~2006
1856989811371397962310 ~2003
18570315134085469328711 ~2006
Home
4.724.182 digits
e-mail
25-04-13