Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1731459419346291883910 ~2003
1731462851346292570310 ~2003
1731542783346308556710 ~2003
17315541295194662387111 ~2006
1731573143346314628710 ~2003
17315806071385264485711 ~2005
1731760031346352006310 ~2003
1731853451346370690310 ~2003
17318839971385507197711 ~2005
1731919391346383878310 ~2003
1731957371346391474310 ~2003
17319576771039174606311 ~2004
1732068479346413695910 ~2003
1732098359346419671910 ~2003
17321245671385699653711 ~2005
1732211951346442390310 ~2003
17322642771039358566311 ~2004
17323047977968602066311 ~2006
17323690434504159511911 ~2006
17323860771039431646311 ~2004
17324037131039442227911 ~2004
17324090931039445455911 ~2004
17324218095197265427111 ~2006
1732451411346490282310 ~2003
1732456919346491383910 ~2003
Exponent Prime Factor Digits Year
1732482623346496524710 ~2003
17325148031732514803111 ~2005
1732522019346504403910 ~2003
1732639019346527803910 ~2003
1732655783346531156710 ~2003
1732729319346545863910 ~2003
1732742351346548470310 ~2003
1732804523346560904710 ~2003
1732875899346575179910 ~2003
17331313331039878799911 ~2004
17331833931039910035911 ~2004
1733200751346640150310 ~2003
1733335979346667195910 ~2003
1733420519346684103910 ~2003
1733423231346684646310 ~2003
1733442059346688411910 ~2003
17334463811040067828711 ~2004
1733481923346696384710 ~2003
17335243615200573083111 ~2006
1733630903346726180710 ~2003
1733635331346727066310 ~2003
1733688371346737674310 ~2003
1733722751346744550310 ~2003
17337251991386980159311 ~2005
1733840063346768012710 ~2003
Exponent Prime Factor Digits Year
1733872571346774514310 ~2003
1733889359346777871910 ~2003
1733952491346790498310 ~2003
17339568771040374126311 ~2004
1733987603346797520710 ~2003
1734039623346807924710 ~2003
1734074483346814896710 ~2003
1734074939346814987910 ~2003
17341240271734124027111 ~2005
1734134399346826879910 ~2003
1734197291346839458310 ~2003
17342389931040543395911 ~2004
1734242099346848419910 ~2003
1734263939346852787910 ~2003
17342738511387419080911 ~2005
17342804531040568271911 ~2004
1734320771346864154310 ~2003
17343379671387470373711 ~2005
1734547883346909576710 ~2003
17346307011040778420711 ~2004
1734682751346936550310 ~2003
1734853271346970654310 ~2003
17348704071387896325711 ~2005
1734877031346975406310 ~2003
1734898859346979771910 ~2003
Exponent Prime Factor Digits Year
1735115363347023072710 ~2003
17351165531041069931911 ~2004
17351181673123212700711 ~2005
1735122611347024522310 ~2003
17351376611041082596711 ~2004
17351998211041119892711 ~2004
17352058212776329313711 ~2005
1735249751347049950310 ~2003
1735297691347059538310 ~2003
1735468991347093798310 ~2003
1735473599347094719910 ~2003
1735604063347120812710 ~2003
1735661831347132366310 ~2003
17356907111735690711111 ~2005
1735777343347155468710 ~2003
17357869794165888749711 ~2006
1735872959347174591910 ~2003
1735970531347194106310 ~2003
1736121683347224336710 ~2003
1736335151347267030310 ~2003
17364200112778272017711 ~2005
17364317091389145367311 ~2005
17364548571389163885711 ~2005
1736455211347291042310 ~2003
1736474651347294930310 ~2003
Home
4.724.182 digits
e-mail
25-04-13