Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
17365128594167630861711 ~2006
17365724411041943464711 ~2004
1736646563347329312710 ~2003
1736664383347332876710 ~2003
1736711363347342272710 ~2003
17367339834168161559311 ~2006
1736853323347370664710 ~2003
1736882879347376575910 ~2003
1736981423347396284710 ~2003
1737027359347405471910 ~2003
1737044051347408810310 ~2003
17370771171042246270311 ~2004
1737086651347417330310 ~2003
17371922274169261344911 ~2006
1737226919347445383910 ~2003
1737317111347463422310 ~2003
17373728991389898319311 ~2005
17374572131042474327911 ~2004
17374721811389977744911 ~2005
1737482231347496446310 ~2003
1737622259347524451910 ~2003
17377083471390166677711 ~2005
1737724031347544806310 ~2003
1737788303347557660710 ~2003
17377928171042675690311 ~2004
Exponent Prime Factor Digits Year
1737892151347578430310 ~2003
17379660535213898159111 ~2006
1737977723347595544710 ~2003
17380076471738007647111 ~2005
1738064123347612824710 ~2003
1738073951347614790310 ~2003
1738126391347625278310 ~2003
1738178531347635706310 ~2003
17382978171042978690311 ~2004
1738333403347666680710 ~2003
1738334231347666846310 ~2003
1738342631347668526310 ~2003
17383682874172083888911 ~2006
1738455143347691028710 ~2003
17386667171043200030311 ~2004
1738744883347748976710 ~2003
17387763594173063261711 ~2006
1738781111347756222310 ~2003
1738796459347759291910 ~2003
1738828463347765692710 ~2003
1738862351347772470310 ~2003
1738902491347780498310 ~2003
17389279011043356740711 ~2004
1738946171347789234310 ~2003
1738962899347792579910 ~2003
Exponent Prime Factor Digits Year
17390698611043441916711 ~2004
17391330371043479822311 ~2004
17392343393130621810311 ~2005
1739252639347850527910 ~2003
1739274863347854972710 ~2003
1739293163347858632710 ~2003
17393056611391444528911 ~2005
173938319317741708568712 ~2007
17393835531043630131911 ~2004
1739462723347892544710 ~2003
17395141491391611319311 ~2005
1739518199347903639910 ~2003
1739535299347907059910 ~2003
1739567111347913422310 ~2003
1739677811347935562310 ~2003
1739871599347974319910 ~2003
1739874683347974936710 ~2003
17398938731043936323911 ~2004
1739935331347987066310 ~2003
17399561571043973694311 ~2004
1739970311347994062310 ~2003
17399949531043996971911 ~2004
17400627771044037666311 ~2004
17401752731044105163911 ~2004
17401975276960790108111 ~2006
Exponent Prime Factor Digits Year
1740270803348054160710 ~2003
17402796911740279691111 ~2005
1740357551348071510310 ~2003
17405733431740573343111 ~2005
17405738931044344335911 ~2004
1740594599348118919910 ~2003
17406007332784961172911 ~2005
17406117671740611767111 ~2005
1740749891348149978310 ~2003
17407632011044457920711 ~2004
1740926723348185344710 ~2003
1740934439348186887910 ~2003
17409877095222963127111 ~2006
17410347972785655675311 ~2005
17410424531044625471911 ~2004
1741116983348223396710 ~2003
17411308131044678487911 ~2004
1741164371348232874310 ~2003
1741211399348242279910 ~2003
17412530692437754296711 ~2005
17413502571393080205711 ~2005
1741385111348277022310 ~2003
1741419671348283934310 ~2003
1741460183348292036710 ~2003
1741503143348300628710 ~2003
Home
4.724.182 digits
e-mail
25-04-13