Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
17706475331062388519911 ~2004
1770678803354135760710 ~2003
1770907343354181468710 ~2003
1771018631354203726310 ~2003
1771203851354240770310 ~2003
17713706691417096535311 ~2005
1771423259354284651910 ~2003
17714557371062873442311 ~2004
1771456103354291220710 ~2003
1771489259354297851910 ~2003
1771499291354299858310 ~2003
17715012971062900778311 ~2004
1771538999354307799910 ~2003
17715771732834523476911 ~2005
17716359411417308752911 ~2005
1771715303354343060710 ~2003
1771719179354343835910 ~2003
17717524011063051440711 ~2004
1771804211354360842310 ~2003
17718904434252537063311 ~2006
1771988951354397790310 ~2003
1772007551354401510310 ~2003
17720556471417644517711 ~2005
1772161211354432242310 ~2003
17722021491417761719311 ~2005
Exponent Prime Factor Digits Year
1772232743354446548710 ~2003
17722940112835670417711 ~2005
1772316239354463247910 ~2003
1772336999354467399910 ~2003
1772341871354468374310 ~2003
1772366111354473222310 ~2003
17724238812835878209711 ~2005
17724462411063467744711 ~2004
1772466263354493252710 ~2003
17724767993190458238311 ~2006
1772563139354512627910 ~2003
177263674311344875155312 ~2007
1772754299354550859910 ~2003
1772772923354554584710 ~2003
17727882611063672956711 ~2004
17727946034254707047311 ~2006
177284005723756056763912 ~2008
1772863019354572603910 ~2003
1772863439354572687910 ~2003
1772870303354574060710 ~2003
1772915723354583144710 ~2003
1772918951354583790310 ~2003
17729730311772973031111 ~2005
17729895672836783307311 ~2005
1773158903354631780710 ~2003
Exponent Prime Factor Digits Year
1773160799354632159910 ~2003
1773209363354641872710 ~2003
17732794211063967652711 ~2004
1773289691354657938310 ~2003
1773299831354659966310 ~2003
17733078011063984680711 ~2004
1773355043354671008710 ~2003
1773373463354674692710 ~2003
17733877015674840643311 ~2006
17734110011064046600711 ~2004
17734234371418738749711 ~2005
17734440731064066443911 ~2004
17734595211418767616911 ~2005
1773477971354695594310 ~2003
1773567011354713402310 ~2003
1773567611354713522310 ~2003
1773682979354736595910 ~2003
1773720479354744095910 ~2003
17737271391418981711311 ~2005
1773734243354746848710 ~2003
1773908459354781691910 ~2003
1773978191354795638310 ~2003
17740071971064404318311 ~2004
17740226171064413570311 ~2004
17740353113193263559911 ~2006
Exponent Prime Factor Digits Year
1774035479354807095910 ~2003
17740455731064427343911 ~2004
17740535511419242840911 ~2005
1774077743354815548710 ~2003
1774086371354817274310 ~2003
1774111259354822251910 ~2003
17741335333903093772711 ~2006
1774209263354841852710 ~2003
17742443091419395447311 ~2005
17742712731064562763911 ~2004
17742723971064563438311 ~2004
17742862813903429818311 ~2006
1774288619354857723910 ~2003
1774338431354867686310 ~2003
17743497711419479816911 ~2005
1774375931354875186310 ~2003
1774453403354890680710 ~2003
17746039131064762347911 ~2004
1774620863354924172710 ~2003
1774626179354925235910 ~2003
1774717019354943403910 ~2003
1774725983354945196710 ~2003
1774804523354960904710 ~2003
1774821551354964310310 ~2003
1774846823354969364710 ~2003
Home
4.724.182 digits
e-mail
25-04-13