Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1779697091355939418310 ~2003
1779787319355957463910 ~2003
17797917711423833416911 ~2005
17798690111779869011111 ~2005
1779935471355987094310 ~2003
1779959003355991800710 ~2003
17799881171067992870311 ~2004
1780024643356004928710 ~2003
1780030463356006092710 ~2003
17801754431780175443111 ~2005
17801928711424154296911 ~2005
17802377771068142666311 ~2004
17803129311424250344911 ~2005
1780319759356063951910 ~2003
17803324791424265983311 ~2005
1780360811356072162310 ~2003
1780450163356090032710 ~2003
17804772411068286344711 ~2004
1780498019356099603910 ~2003
17805104811424408384911 ~2005
1780571951356114390310 ~2003
17807127771068427666311 ~2004
1780715399356143079910 ~2003
1780754243356150848710 ~2003
17807644812849223169711 ~2005
Exponent Prime Factor Digits Year
1780784711356156942310 ~2003
1780787279356157455910 ~2003
17808548771068512926311 ~2004
17809030271780903027111 ~2005
1780965311356193062310 ~2003
17810094072849615051311 ~2005
17810851139974076632911 ~2007
17811574371068694462311 ~2004
1781159519356231903910 ~2003
1781345711356269142310 ~2003
1781351003356270200710 ~2003
17814320471781432047111 ~2005
1781434211356286842310 ~2003
17814542172850326747311 ~2005
1781494079356298815910 ~2003
1781505851356301170310 ~2003
17815883771068953026311 ~2004
17816251615344875483111 ~2006
1781636903356327380710 ~2003
1781651411356330282310 ~2003
17816632391781663239111 ~2005
1781687051356337410310 ~2003
1781725223356345044710 ~2003
17817354291425388343311 ~2005
1781746511356349302310 ~2003
Exponent Prime Factor Digits Year
1781761463356352292710 ~2003
1781804483356360896710 ~2003
1781864411356372882310 ~2003
1781892251356378450310 ~2003
1781926259356385251910 ~2003
17819336411069160184711 ~2004
1781937803356387560710 ~2003
1781988011356397602310 ~2003
1782017663356403532710 ~2003
1782031463356406292710 ~2003
178204135116038372159112 ~2007
1782095603356419120710 ~2003
1782133439356426687910 ~2003
17821416535346424959111 ~2006
17821897011069313820711 ~2004
1782196151356439230310 ~2003
1782267551356453510310 ~2003
1782307379356461475910 ~2003
1782312431356462486310 ~2003
1782334583356466916710 ~2003
1782338963356467792710 ~2003
1782356183356471236710 ~2003
17824699193208445854311 ~2006
17824757571069485454311 ~2004
1782479483356495896710 ~2003
Exponent Prime Factor Digits Year
17824819011425985520911 ~2005
1782522491356504498310 ~2003
17825323371426025869711 ~2005
1782538643356507728710 ~2003
17825946471426075717711 ~2005
17826541492495715808711 ~2005
1782664283356532856710 ~2003
1782692123356538424710 ~2003
1782733079356546615910 ~2003
1782844559356568911910 ~2003
17828645211426291616911 ~2005
178294927915689953655312 ~2007
1782957791356591558310 ~2003
1783074431356614886310 ~2003
1783083143356616628710 ~2003
1783087583356617516710 ~2003
17831293011426503440911 ~2005
17831809991783180999111 ~2005
1783292279356658455910 ~2003
1783310099356662019910 ~2003
1783379231356675846310 ~2003
1783408271356681654310 ~2003
1783435523356687104710 ~2003
1783436579356687315910 ~2003
1783481123356696224710 ~2003
Home
4.724.182 digits
e-mail
25-04-13