Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1254728291250945658310 ~2002
1254732779250946555910 ~2002
1254752963250950592710 ~2002
1254768479250953695910 ~2002
1254810659250962131910 ~2002
12548134916274067455111 ~2005
1254833543250966708710 ~2002
1254899843250979968710 ~2002
12549013393011763213711 ~2005
12549185511003934840911 ~2004
12550719012008115041711 ~2004
1255158197753094918310 ~2003
12551604472259288804711 ~2004
1255171751251034350310 ~2002
1255173371251034674310 ~2002
12551860212761409246311 ~2005
12552161412008345825711 ~2004
12552748932008439828911 ~2004
12552904971757406695911 ~2004
1255342019251068403910 ~2002
1255365011251073002310 ~2002
12554150331757581046311 ~2004
1255419719251083943910 ~2002
1255436437753261862310 ~2003
12554569071004365525711 ~2004
Exponent Prime Factor Digits Year
1255539011251107802310 ~2002
1255554731251110946310 ~2002
1255567979251113595910 ~2002
1255595051251119010310 ~2002
1255598339251119667910 ~2002
12556588511255658851111 ~2004
1255704839251140967910 ~2002
1255720943251144188710 ~2002
12557721171004617693711 ~2004
1255824683251164936710 ~2002
1255839863251167972710 ~2002
1255918463251183692710 ~2002
1255945283251189056710 ~2002
1256051903251210380710 ~2002
12560958732009753396911 ~2004
1256160371251232074310 ~2002
1256201339251240267910 ~2002
1256208419251241683910 ~2002
1256248633753749179910 ~2003
12562888332010062132911 ~2004
12562980897789048151911 ~2006
1256299673753779803910 ~2003
12563305671005064453711 ~2004
1256430419251286083910 ~2002
12564305511005144440911 ~2004
Exponent Prime Factor Digits Year
1256479151251295830310 ~2002
1256481623251296324710 ~2002
1256486213753891727910 ~2003
1256497139251299427910 ~2002
1256527403251305480710 ~2002
12565276671005222133711 ~2004
1256579399251315879910 ~2002
1256583323251316664710 ~2002
12565906791005272543311 ~2004
1256607239251321447910 ~2002
1256645843251329168710 ~2002
12566567773015976264911 ~2005
1256668691251333738310 ~2002
1256672003251334400710 ~2002
12567196491759407508711 ~2004
1256723411251344682310 ~2002
1256746397754047838310 ~2003
1256786231251357246310 ~2002
1256788777754073266310 ~2003
1256858353754115011910 ~2003
12570155111257015511111 ~2004
1257020711251404142310 ~2002
12570482091005638567311 ~2004
1257088691251417738310 ~2002
12571623173017189560911 ~2005
Exponent Prime Factor Digits Year
1257181259251436251910 ~2002
12571865591257186559111 ~2004
12572065071005765205711 ~2004
1257239099251447819910 ~2002
1257270923251454184710 ~2002
1257279899251455979910 ~2002
1257328703251465740710 ~2002
1257353221754411932710 ~2003
1257365111251473022310 ~2002
1257399683251479936710 ~2002
1257408863251481772710 ~2002
1257410123251482024710 ~2002
1257482183251496436710 ~2002
125757439318863615895112 ~2007
1257575003251515000710 ~2002
1257577457754546474310 ~2003
1257623219251524643910 ~2002
1257635363251527072710 ~2002
1257754871251550974310 ~2002
1257777743251555548710 ~2002
1257810017754686010310 ~2003
1257867959251573591910 ~2002
12578859318302047144711 ~2006
125792942951323520703312 ~2008
1257941099251588219910 ~2002
Home
4.843.404 digits
e-mail
25-06-08