Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
18194146011091648760711 ~2004
18194195931091651755911 ~2004
18194754771455580381711 ~2005
18194801274730648330311 ~2006
1819495319363899063910 ~2003
1819506119363901223910 ~2003
18195689211455655136911 ~2005
1819579211363915842310 ~2003
18195814031819581403111 ~2005
18196632771091797966311 ~2004
1819748951363949790310 ~2003
18198762731091925763911 ~2004
18198898731091933923911 ~2004
18198919011455913520911 ~2005
1819914263363982852710 ~2003
1819923719363984743910 ~2003
18199607391455968591311 ~2005
1819998023363999604710 ~2003
1820024711364004942310 ~2003
1820082359364016471910 ~2003
18201231532548172414311 ~2005
18201940934004427004711 ~2006
1820194223364038844710 ~2003
1820195603364039120710 ~2003
1820276519364055303910 ~2003
Exponent Prime Factor Digits Year
1820319551364063910310 ~2003
18203443131092206587911 ~2004
1820361551364072310310 ~2003
1820464199364092839910 ~2003
18206946131092416767911 ~2004
1820776883364155376710 ~2003
1820789843364157968710 ~2003
18208639511820863951111 ~2005
1820867183364173436710 ~2003
1820950559364190111910 ~2003
18209688171092581290311 ~2004
1821015263364203052710 ~2003
18210724271821072427111 ~2005
1821089183364217836710 ~2003
1821148403364229680710 ~2003
1821149399364229879910 ~2003
18211828434370838823311 ~2006
1821280451364256090310 ~2003
1821280871364256174310 ~2003
1821307931364261586310 ~2003
1821345563364269112710 ~2003
18214939371092896362311 ~2004
1821506759364301351910 ~2003
18215195931092911755911 ~2004
18215754611092945276711 ~2004
Exponent Prime Factor Digits Year
1821643283364328656710 ~2003
1821648011364329602310 ~2003
1821673559364334711910 ~2003
1821756311364351262310 ~2003
18217717131093063027911 ~2004
1821788543364357708710 ~2003
1821802211364360442310 ~2003
18219139571093148374311 ~2004
18220114972550816095911 ~2005
1822051859364410371910 ~2003
18221073171093264390311 ~2004
1822184051364436810310 ~2003
1822212863364442572710 ~2003
18223462032915753924911 ~2006
1822413539364482707910 ~2003
18224365731093461943911 ~2004
1822460459364492091910 ~2003
18225025793280504642311 ~2006
18226621731093597303911 ~2004
18226692371093601542311 ~2004
18226977531093618651911 ~2004
1822865123364573024710 ~2003
18229142531093748551911 ~2004
182293258933541959637712 ~2008
1822973759364594751910 ~2003
Exponent Prime Factor Digits Year
1822973891364594778310 ~2003
18230361611093821696711 ~2004
1823053091364610618310 ~2003
1823283179364656635910 ~2003
18233745711458699656911 ~2005
18234338531094060311911 ~2004
18235090195835228860911 ~2006
18235281835835290185711 ~2006
1823567171364713434310 ~2003
1823599439364719887910 ~2003
1823695631364739126310 ~2003
18236973411094218404711 ~2004
1823703803364740760710 ~2003
1823723663364744732710 ~2003
1823725511364745102310 ~2003
1823769203364753840710 ~2003
1823809931364761986310 ~2003
18238433932553380750311 ~2005
18238796331094327779911 ~2004
1823935079364787015910 ~2003
1824001103364800220710 ~2003
18240301011459224080911 ~2005
1824183551364836710310 ~2003
18242559591459404767311 ~2005
1824282431364856486310 ~2003
Home
4.724.182 digits
e-mail
25-04-13