Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1876543139375308627910 ~2003
1876578239375315647910 ~2003
1876686551375337310310 ~2003
18767913797882523791911 ~2007
1876813079375362615910 ~2003
1876814063375362812710 ~2003
1876939979375387995910 ~2003
1876972631375394526310 ~2003
1876995203375399040710 ~2003
1877037023375407404710 ~2003
1877038931375407786310 ~2003
18770400174504896040911 ~2006
1877060519375412103910 ~2003
1877088623375417724710 ~2003
1877091383375418276710 ~2003
18772420397884416563911 ~2007
1877263211375452642310 ~2003
18772939611126376376711 ~2005
18773122011126387320711 ~2005
18774199334130323852711 ~2006
18774370331126462219911 ~2005
1877728691375545738310 ~2003
1877769431375553886310 ~2003
18778689911877868991111 ~2005
1877897303375579460710 ~2003
Exponent Prime Factor Digits Year
18779172593380251066311 ~2006
1877938091375587618310 ~2003
1877971883375594376710 ~2003
18779799131126787947911 ~2005
1878011963375602392710 ~2003
18780324791878032479111 ~2005
1878111611375622322310 ~2003
1878149459375629891910 ~2003
1878157751375631550310 ~2003
1878158231375631646310 ~2003
18782805771502624461711 ~2005
1878297983375659596710 ~2003
1878317723375663544710 ~2003
18783271511878327151111 ~2005
1878370271375674054310 ~2003
1878506543375701308710 ~2003
1878511031375702206310 ~2003
1878578063375715612710 ~2003
18786201133005792180911 ~2006
1878625223375725044710 ~2003
1878652511375730502310 ~2003
18787459971127247598311 ~2005
1878809063375761812710 ~2003
1878893231375778646310 ~2003
18789609131127376547911 ~2005
Exponent Prime Factor Digits Year
1878976343375795268710 ~2003
18789801373006368219311 ~2006
18790544391503243551311 ~2005
18790575771127434546311 ~2005
1879171571375834314310 ~2003
18792750591503420047311 ~2005
1879318163375863632710 ~2003
1879426883375885376710 ~2003
1879456739375891347910 ~2003
1879494863375898972710 ~2003
1879520939375904187910 ~2003
18795259273383146668711 ~2006
1879591583375918316710 ~2003
18796023591503681887311 ~2005
18796209494135166087911 ~2006
1879642643375928528710 ~2003
1879663679375932735910 ~2003
18797040611127822436711 ~2005
1879715339375943067910 ~2003
1879737263375947452710 ~2003
1879759523375951904710 ~2003
1879898483375979696710 ~2003
18799013211127940792711 ~2005
1879988531375997706310 ~2003
18800800731128048043911 ~2005
Exponent Prime Factor Digits Year
18800919771504073581711 ~2005
1880132543376026508710 ~2003
18801532071504122565711 ~2005
1880156543376031308710 ~2003
18802038611128122316711 ~2005
18802501371128150082311 ~2005
1880250503376050100710 ~2003
1880332403376066480710 ~2003
18803530871880353087111 ~2005
1880411411376082282310 ~2003
18804518574513084456911 ~2006
18804891673008782667311 ~2006
1880538323376107664710 ~2003
1880559251376111850310 ~2003
1880720399376144079910 ~2003
18807757371504620589711 ~2005
18807936134513904671311 ~2006
18808067211504645376911 ~2005
18808541231880854123111 ~2005
1881022343376204468710 ~2003
18810269111881026911111 ~2005
1881032123376206424710 ~2003
18811323531128679411911 ~2005
18811425131128685507911 ~2005
18814546913386618443911 ~2006
Home
4.724.182 digits
e-mail
25-04-13