Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1534716863306943372710 ~2003
1534751303306950260710 ~2003
1534778213920866927910 ~2004
1534915859306983171910 ~2003
1534966451306993290310 ~2003
1534999463306999892710 ~2003
1535070371307014074310 ~2003
15351086571228086925711 ~2004
1535193743307038748710 ~2003
1535253383307050676710 ~2003
1535344631307068926310 ~2003
1535352443307070488710 ~2003
1535371763307074352710 ~2003
1535427143307085428710 ~2003
1535472923307094584710 ~2003
1535566619307113323910 ~2003
1535605391307121078310 ~2003
15356295773685510984911 ~2005
1535673961921404376710 ~2004
15356811711228544936911 ~2004
1535711003307142200710 ~2003
1535756441921453864710 ~2004
15357788211228623056911 ~2004
1535791643307158328710 ~2003
1535825771307165154310 ~2003
Exponent Prime Factor Digits Year
15358658091228692647311 ~2004
1535896079307179215910 ~2003
1535906951307181390310 ~2003
1535946383307189276710 ~2003
1535977979307195595910 ~2003
1535979839307195967910 ~2003
1535994359307198871910 ~2003
15359975271228798021711 ~2004
1536042503307208500710 ~2003
1536079211307215842310 ~2003
15360895517373229844911 ~2006
1536098939307219787910 ~2003
1536127739307225547910 ~2003
1536264841921758904710 ~2004
15362720691229017655311 ~2004
1536278699307255739910 ~2003
1536298691307259738310 ~2003
1536342383307268476710 ~2003
1536407363307281472710 ~2003
1536416963307283392710 ~2003
15364483993687476157711 ~2005
1536498179307299635910 ~2003
1536511139307302227910 ~2003
1536562463307312492710 ~2003
15366206711536620671111 ~2004
Exponent Prime Factor Digits Year
1536776243307355248710 ~2003
15368041971229443357711 ~2004
1536835031307367006310 ~2003
1536848171307369634310 ~2003
15368938011229515040911 ~2004
1536952633922171579910 ~2004
1536966779307393355910 ~2003
1536983111307396622310 ~2003
15371055013381632102311 ~2005
15372201773689328424911 ~2005
153722799724595647952112 ~2007
15372300411229784032911 ~2004
1537304159307460831910 ~2003
15373449111229875928911 ~2004
1537438739307487747910 ~2003
1537440419307488083910 ~2003
1537491233922494739910 ~2004
1537509023307501804710 ~2003
1537557023307511404710 ~2003
1537598999307519799910 ~2003
1537612091307522418310 ~2003
1537616903307523380710 ~2003
1537621439307524287910 ~2003
1537626011307525202310 ~2003
1537669103307533820710 ~2003
Exponent Prime Factor Digits Year
1537677157922606294310 ~2004
1537719193922631515910 ~2004
1537770191307554038310 ~2003
1537875863307575172710 ~2003
1537892579307578515910 ~2003
1537907963307581592710 ~2003
1537909679307581935910 ~2003
1537917239307583447910 ~2003
1538010959307602191910 ~2003
1538014091307602818310 ~2003
1538038283307607656710 ~2003
1538053763307610752710 ~2003
1538138531307627706310 ~2003
1538141723307628344710 ~2003
1538152883307630576710 ~2003
1538182571307636514310 ~2003
1538243891307648778310 ~2003
1538274191307654838310 ~2003
15383181291230654503311 ~2004
1538391839307678367910 ~2003
1538406983307681396710 ~2003
1538409479307681895910 ~2003
1538424659307684931910 ~2003
1538525363307705072710 ~2003
1538529119307705823910 ~2003
Home
4.843.404 digits
e-mail
25-06-08