Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1700517491340103498310 ~2003
17006090771020365446311 ~2004
1700667443340133488710 ~2003
17006786531020407191911 ~2004
17007490135102247039111 ~2006
1700823671340164734310 ~2003
17008373811020502428711 ~2004
1700848199340169639910 ~2003
17008837571020530254311 ~2004
1700979779340195955910 ~2003
1700988143340197628710 ~2003
1701158999340231799910 ~2003
1701254111340250822310 ~2003
1701281759340256351910 ~2003
1701290471340258094310 ~2003
1701307799340261559910 ~2003
1701372839340274567910 ~2003
1701413471340282694310 ~2003
1701454031340290806310 ~2003
1701456983340291396710 ~2003
17014877293743273003911 ~2006
1701592943340318588710 ~2003
1701602783340320556710 ~2003
1701717359340343471910 ~2003
1701732239340346447910 ~2003
Exponent Prime Factor Digits Year
1701736859340347371910 ~2003
17017544332382456206311 ~2005
17017892391361431391311 ~2005
1701822299340364459910 ~2003
17018512732382591782311 ~2005
1701902879340380575910 ~2003
17020401131021224067911 ~2004
1702042019340408403910 ~2003
1702069643340413928710 ~2003
17021219211361697536911 ~2005
170223070914979630239312 ~2007
1702287011340457402310 ~2003
1702293863340458772710 ~2003
1702337723340467544710 ~2003
1702426283340485256710 ~2003
17025217011021513020711 ~2004
1702552991340510598310 ~2003
17025756611021545396711 ~2004
1702635899340527179910 ~2003
1702637903340527580710 ~2003
1702690883340538176710 ~2003
1702704383340540876710 ~2003
1702736663340547332710 ~2003
1702758191340551638310 ~2003
17027990831702799083111 ~2005
Exponent Prime Factor Digits Year
1702978031340595606310 ~2003
17030719071362457525711 ~2005
1703167283340633456710 ~2003
1703169983340633996710 ~2003
17032578611021954716711 ~2004
1703278319340655663910 ~2003
1703286503340657300710 ~2003
17033555411022013324711 ~2004
1703444651340688930310 ~2003
1703469143340693828710 ~2003
1703493359340698671910 ~2003
17035126611022107596711 ~2004
1703585063340717012710 ~2003
1703674163340734832710 ~2003
17037009411022220564711 ~2004
17037275771022236546311 ~2004
1703735531340747106310 ~2003
1703737151340747430310 ~2003
17037639111363011128911 ~2005
17037726616815090644111 ~2006
1703801111340760222310 ~2003
1703819531340763906310 ~2003
17038385331022303119911 ~2004
17038833431703883343111 ~2005
1703905211340781042310 ~2003
Exponent Prime Factor Digits Year
17039922311703992231111 ~2005
17040432611022425956711 ~2004
1704091331340818266310 ~2003
1704101783340820356710 ~2003
170423103115338079279112 ~2007
17043461211022607672711 ~2004
1704432479340886495910 ~2003
17044591811022675508711 ~2004
1704494411340898882310 ~2003
17045460371022727622311 ~2004
1704576959340915391910 ~2003
1704669839340933967910 ~2003
17046799931022807995911 ~2004
1704694331340938866310 ~2003
1704752459340950491910 ~2003
1704799619340959923910 ~2003
17048299611022897976711 ~2004
1704928523340985704710 ~2003
1704943151340988630310 ~2003
1705048703341009740710 ~2003
1705063823341012764710 ~2003
1705090883341018176710 ~2003
1705099163341019832710 ~2003
1705181099341036219910 ~2003
1705191899341038379910 ~2003
Home
4.843.404 digits
e-mail
25-06-08