Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1542954383308590876710 ~2003
15429553192777319574311 ~2005
1543038863308607772710 ~2003
1543070411308614082310 ~2003
15431284492160379828711 ~2005
1543148003308629600710 ~2003
1543153553925892131910 ~2004
1543264643308652928710 ~2003
1543344503308668900710 ~2003
15433892231543389223111 ~2004
1543397321926038392710 ~2004
1543418531308683706310 ~2003
1543502111308700422310 ~2003
1543575479308715095910 ~2003
1543628591308725718310 ~2003
15436838111543683811111 ~2004
1543689493926213695910 ~2004
1543840211308768042310 ~2003
1543841363308768272710 ~2003
15438618494631585547111 ~2006
1543957091308791418310 ~2003
15439876491235190119311 ~2004
1543994183308798836710 ~2003
1544006039308801207910 ~2003
1544027759308805551910 ~2003
Exponent Prime Factor Digits Year
1544061803308812360710 ~2003
1544068871308813774310 ~2003
1544103311308820662310 ~2003
1544122379308824475910 ~2003
1544133491308826698310 ~2003
1544147653926488591910 ~2004
154415645911426757796712 ~2007
1544164403308832880710 ~2003
1544196673926518003910 ~2004
1544207459308841491910 ~2003
1544218163308843632710 ~2003
1544245117926547070310 ~2004
1544252999308850599910 ~2003
15442685691235414855311 ~2004
15442873993706289757711 ~2005
1544312411308862482310 ~2003
1544341919308868383910 ~2003
1544364791308872958310 ~2003
1544378471308875694310 ~2003
15444524231544452423111 ~2004
1544478997926687398310 ~2004
1544483663308896732710 ~2003
1544505779308901155910 ~2003
1544544623308908924710 ~2003
1544570903308914180710 ~2003
Exponent Prime Factor Digits Year
1544592083308918416710 ~2003
1544649143308929828710 ~2003
1544669363308933872710 ~2003
1544671981926803188710 ~2004
1544686271308937254310 ~2003
1544711543308942308710 ~2003
1544772611308954522310 ~2003
1544827103308965420710 ~2003
1544914523308982904710 ~2003
1544936663308987332710 ~2003
1544954363308990872710 ~2003
1544979539308995907910 ~2003
15451558193708373965711 ~2005
15451955591545195559111 ~2004
1545293723309058744710 ~2003
1545315059309063011910 ~2003
15454656591236372527311 ~2004
1545702881927421728710 ~2004
1545744611309148922310 ~2003
1545749141927449484710 ~2004
1545754943309150988710 ~2003
1545756083309151216710 ~2003
15457696191236615695311 ~2004
1545772751309154550310 ~2003
1545801833927481099910 ~2004
Exponent Prime Factor Digits Year
15458031771236642541711 ~2004
1545805451309161090310 ~2003
1545847091309169418310 ~2003
1545850739309170147910 ~2003
15458741511236699320911 ~2004
1545900803309180160710 ~2003
1545988043309197608710 ~2003
15459887293401175203911 ~2005
1546024559309204911910 ~2003
1546025111309205022310 ~2003
154603240917315562980912 ~2007
1546045031309209006310 ~2003
1546055663309211132710 ~2003
15460572291236845783311 ~2004
1546060259309212051910 ~2003
1546080491309216098310 ~2003
1546178737927707242310 ~2004
1546244891309248978310 ~2003
15462921917422202516911 ~2006
1546302839309260567910 ~2003
1546304891309260978310 ~2003
1546400879309280175910 ~2003
1546489319309297863910 ~2003
1546499183309299836710 ~2003
1546547591309309518310 ~2003
Home
4.843.404 digits
e-mail
25-06-08