Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1665871079333174215910 ~2003
1666077277999646366310 ~2004
1666091939333218387910 ~2003
1666095131333219026310 ~2003
1666124699333224939910 ~2003
1666150259333230051910 ~2003
1666155479333231095910 ~2003
1666210379333242075910 ~2003
1666214279333242855910 ~2003
1666236191333247238310 ~2003
16662774891333021991311 ~2004
1666295221999777132710 ~2004
1666304021999782412710 ~2004
16663367511333069400911 ~2004
16664099476665639788111 ~2006
1666434179333286835910 ~2003
1666443673999866203910 ~2004
1666448603333289720710 ~2003
1666517903333303580710 ~2003
1666535621999921372710 ~2004
1666536383333307276710 ~2003
1666570211333314042310 ~2003
16665940371333275229711 ~2004
1666614899333322979910 ~2003
16667107131000026427911 ~2004
Exponent Prime Factor Digits Year
1666741859333348371910 ~2003
1666771943333354388710 ~2003
1666792091333358418310 ~2003
16668368171000102090311 ~2004
1666853411333370682310 ~2003
1666862111333372422310 ~2003
16668729731000123783911 ~2004
1666934459333386891910 ~2003
16669741212667158593711 ~2005
16670591873000706536711 ~2005
16671264411333701152911 ~2004
1667138171333427634310 ~2003
1667242211333448442310 ~2003
1667245799333449159910 ~2003
16672785593001101406311 ~2005
1667377643333475528710 ~2003
16674013491333921079311 ~2004
16674255171000455310311 ~2004
1667434403333486880710 ~2003
1667436443333487288710 ~2003
1667473499333494699910 ~2003
16675549793001598962311 ~2005
1667599019333519803910 ~2003
1667619731333523946310 ~2003
1667771543333554308710 ~2003
Exponent Prime Factor Digits Year
1667783723333556744710 ~2003
1667806163333561232710 ~2003
1667815223333563044710 ~2003
1667823791333564758310 ~2003
16678859571000731574311 ~2004
16678939797005154711911 ~2006
1667895431333579086310 ~2003
16679639091334371127311 ~2004
1667963939333592787910 ~2003
16680480771000828846311 ~2004
1668074363333614872710 ~2003
16681597911334527832911 ~2004
16681763531000905811911 ~2004
1668191243333638248710 ~2003
16682282713002810887911 ~2005
16682670171000960210311 ~2004
1668304871333660974310 ~2003
1668328463333665692710 ~2003
166835641316016221564912 ~2007
166845479314348711219912 ~2007
1668457019333691403910 ~2003
16684646211001078772711 ~2004
1668473519333694703910 ~2003
1668554351333710870310 ~2003
1668595391333719078310 ~2003
Exponent Prime Factor Digits Year
16686013011001160780711 ~2004
1668711563333742312710 ~2003
16687184335006155299111 ~2006
1668726971333745394310 ~2003
16687522374005005368911 ~2006
16687828331001269699911 ~2004
1668803159333760631910 ~2003
1668808283333761656710 ~2003
1668820403333764080710 ~2003
16688358291335068663311 ~2004
1668991211333798242310 ~2003
16690180032670428804911 ~2005
1669088831333817766310 ~2003
1669121423333824284710 ~2003
16691492771001489566311 ~2004
1669152311333830462310 ~2003
1669160579333832115910 ~2003
16692108611001526516711 ~2004
1669222259333844451910 ~2003
16692381611001542896711 ~2004
1669286243333857248710 ~2003
16693010418012644996911 ~2006
1669303199333860639910 ~2003
1669320539333864107910 ~2003
16693223211335457856911 ~2005
Home
4.843.404 digits
e-mail
25-06-08