Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1728115919345623183910 ~2003
1728206279345641255910 ~2003
17282123571036927414311 ~2004
1728328499345665699910 ~2003
1728353171345670634310 ~2003
17283585171382686813711 ~2005
1728403199345680639910 ~2003
1728510083345702016710 ~2003
1728557711345711542310 ~2003
17285888471728588847111 ~2005
1728606083345721216710 ~2003
1728640079345728015910 ~2003
1728723383345744676710 ~2003
1728728063345745612710 ~2003
1728776279345755255910 ~2003
1728786263345757252710 ~2003
1728926483345785296710 ~2003
17289351791728935179111 ~2005
1728971771345794354310 ~2003
1729026671345805334310 ~2003
17290468331037428099911 ~2004
17291132271383290581711 ~2005
1729269071345853814310 ~2003
1729349483345869896710 ~2003
1729350503345870100710 ~2003
Exponent Prime Factor Digits Year
1729399631345879926310 ~2003
17294445531037666731911 ~2004
1729467119345893423910 ~2003
17294699571037681974311 ~2004
1729493471345898694310 ~2003
17295198111383615848911 ~2005
17295938691383675095311 ~2005
1729595831345919166310 ~2003
17296933971383754717711 ~2005
17297272911383781832911 ~2005
1729777691345955538310 ~2003
1729834943345966988710 ~2003
1729838531345967706310 ~2003
17298629931037917795911 ~2004
1729870991345974198310 ~2003
1729876559345975311910 ~2003
1729895543345979108710 ~2003
1729907891345981578310 ~2003
1729920719345984143910 ~2003
1730020823346004164710 ~2003
1730028431346005686310 ~2003
1730028803346005760710 ~2003
1730075783346015156710 ~2003
1730115791346023158310 ~2003
17301382791384110623311 ~2005
Exponent Prime Factor Digits Year
17301554511384124360911 ~2005
1730227259346045451910 ~2003
17302976234152714295311 ~2006
17303142175190942651111 ~2006
1730356811346071362310 ~2003
1730414519346082903910 ~2003
17304324971038259498311 ~2004
1730480159346096031910 ~2003
17306353398307049627311 ~2007
1730652851346130570310 ~2003
1730703059346140611910 ~2003
17307641591730764159111 ~2005
1730828999346165799910 ~2003
1730876519346175303910 ~2003
17309220011038553200711 ~2004
1730937011346187402310 ~2003
173105852351239332280912 ~2008
1731064883346212976710 ~2003
17311194193116014954311 ~2005
1731125471346225094310 ~2003
1731129899346225979910 ~2003
1731148091346229618310 ~2003
1731163223346232644710 ~2003
17312066771038724006311 ~2004
17313710991385096879311 ~2005
Exponent Prime Factor Digits Year
1731459419346291883910 ~2003
1731462851346292570310 ~2003
1731542783346308556710 ~2003
17315541295194662387111 ~2006
1731573143346314628710 ~2003
17315806071385264485711 ~2005
1731760031346352006310 ~2003
1731853451346370690310 ~2003
17318839971385507197711 ~2005
1731919391346383878310 ~2003
1731957371346391474310 ~2003
17319576771039174606311 ~2004
1732068479346413695910 ~2003
1732098359346419671910 ~2003
17321245671385699653711 ~2005
1732211951346442390310 ~2003
17322642771039358566311 ~2004
17323047977968602066311 ~2006
17323690434504159511911 ~2006
17323860771039431646311 ~2004
17324037131039442227911 ~2004
17324090931039445455911 ~2004
17324218095197265427111 ~2006
1732451411346490282310 ~2003
1732456919346491383910 ~2003
Home
4.843.404 digits
e-mail
25-06-08