Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2118848183423769636710 ~2004
2118894551423778910310 ~2004
21188972696356691807111 ~2007
2118914579423782915910 ~2004
2118939131423787826310 ~2004
21189682873814142916711 ~2006
2119131359423826271910 ~2004
2119132199423826439910 ~2004
2119226363423845272710 ~2004
21193807971271628478311 ~2005
21195015771271700946311 ~2005
2119650371423930074310 ~2004
2119704563423940912710 ~2004
21197122371271827342311 ~2005
2119748159423949631910 ~2004
21198058393815650510311 ~2006
21198153296359445987111 ~2007
2119899191423979838310 ~2004
21199057011271943420711 ~2005
21199830776359949231111 ~2007
2119984703423996940710 ~2004
21200042473392006795311 ~2006
2120012579424002515910 ~2004
21203278131272196687911 ~2005
2120393591424078718310 ~2004
Exponent Prime Factor Digits Year
2120648363424129672710 ~2004
2120665751424133150310 ~2004
2120691983424138396710 ~2004
2120792963424158592710 ~2004
21208409571272504574311 ~2005
212085241710180091601712 ~2007
21209152131272549127911 ~2005
2120931503424186300710 ~2004
21209887971272593278311 ~2005
2121004211424200842310 ~2004
2121018563424203712710 ~2004
21210313011272618780711 ~2005
2121049571424209914310 ~2004
21211603131272696187911 ~2005
2121175211424235042310 ~2004
2121194591424238918310 ~2004
2121258071424251614310 ~2004
21212834336788106985711 ~2007
21212955771272777346311 ~2005
21213826731272829603911 ~2005
2121408479424281695910 ~2004
2121428663424285732710 ~2004
21214322331272859339911 ~2005
2121442751424288550310 ~2004
2121479939424295987910 ~2004
Exponent Prime Factor Digits Year
21215143211272908592711 ~2005
2121553103424310620710 ~2004
2121586931424317386310 ~2004
21215887611272953256711 ~2005
2121616751424323350310 ~2004
2121683939424336787910 ~2004
2121743159424348631910 ~2004
2121819083424363816710 ~2004
2121845399424369079910 ~2004
2121877211424375442310 ~2004
21219066011273143960711 ~2005
2122113023424422604710 ~2004
2122113803424422760710 ~2004
21221395993819851278311 ~2006
21221837811273310268711 ~2005
212222676110186688452912 ~2007
21223357371697868589711 ~2005
2122361519424472303910 ~2004
21224098331273445899911 ~2005
21224355313395896849711 ~2006
2122477499424495499910 ~2004
21225779811273546788711 ~2005
2122697039424539407910 ~2004
21227076891698166151311 ~2005
2122835171424567034310 ~2004
Exponent Prime Factor Digits Year
2122835651424567130310 ~2004
2122906403424581280710 ~2004
21229122771273747366311 ~2005
21230743512123074351111 ~2006
2123191859424638371910 ~2004
21233198572972647799911 ~2006
21233519331274011159911 ~2005
2123464163424692832710 ~2004
2123538479424707695910 ~2004
2123674043424734808710 ~2004
212373450745872665351312 ~2009
212374402714016710578312 ~2008
2123752511424750502310 ~2004
21237894411274273664711 ~2005
21238018811274281128711 ~2005
2123850779424770155910 ~2004
2123861639424772327910 ~2004
21239363771274361826311 ~2005
2123940743424788148710 ~2004
2123996603424799320710 ~2004
2124042311424808462310 ~2004
21240867611274452056711 ~2005
2124098159424819631910 ~2004
21241421712124142171111 ~2006
21241672931274500375911 ~2005
Home
4.724.182 digits
e-mail
25-04-13