Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
21241742571274504554311 ~2005
2124196643424839328710 ~2004
2124310283424862056710 ~2004
21243177313398908369711 ~2006
212433243710196795697712 ~2007
2124336839424867367910 ~2004
21243903371274634202311 ~2005
21244486435523566471911 ~2007
21244841811699587344911 ~2005
21245269611274716176711 ~2005
2124537479424907495910 ~2004
2124581183424916236710 ~2004
2124726179424945235910 ~2004
2124871799424974359910 ~2004
2124964403424992880710 ~2004
21250036878500014748111 ~2007
2125036271425007254310 ~2004
2125084631425016926310 ~2004
2125265063425053012710 ~2004
2125290371425058074310 ~2004
2125324403425064880710 ~2004
2125361039425072207910 ~2004
2125475123425095024710 ~2004
2125544579425108915910 ~2004
2125580279425116055910 ~2004
Exponent Prime Factor Digits Year
21256049511700483960911 ~2005
2125637291425127458310 ~2004
21257114991700569199311 ~2005
21257952011275477120711 ~2005
2125870079425174015910 ~2004
2125879139425175827910 ~2004
21259186331275551179911 ~2005
2125974863425194972710 ~2004
2125998659425199731910 ~2004
21261417771700913421711 ~2005
2126259599425251919910 ~2004
21262929411275775764711 ~2005
2126348879425269775910 ~2004
21263494931275809695911 ~2005
2126439179425287835910 ~2004
2126596319425319263910 ~2004
21266197913827915623911 ~2006
2126627663425325532710 ~2004
21266413971275984838311 ~2005
2126658263425331652710 ~2004
2126695271425339054310 ~2004
21267155331276029319911 ~2005
21268065111701445208911 ~2005
2126930759425386151910 ~2004
2127059531425411906310 ~2004
Exponent Prime Factor Digits Year
2127150059425430011910 ~2004
21271982592127198259111 ~2006
2127222203425444440710 ~2004
21273114411276386864711 ~2005
2127394799425478959910 ~2004
2127396059425479211910 ~2004
21274256271701940501711 ~2005
2127561323425512264710 ~2004
2127581843425516368710 ~2004
2127666743425533348710 ~2004
2127700259425540051910 ~2004
21277258571276635514311 ~2005
21277572432127757243111 ~2006
21278042331276682539911 ~2005
21278044311702243544911 ~2005
2127849011425569802310 ~2004
2127923123425584624710 ~2004
2127963419425592683910 ~2004
2127974171425594834310 ~2004
21279889873404782379311 ~2006
2128052879425610575910 ~2004
2128059911425611982310 ~2004
2128101623425620324710 ~2004
2128155479425631095910 ~2004
2128287131425657426310 ~2004
Exponent Prime Factor Digits Year
2128315151425663030310 ~2004
21284382711702750616911 ~2005
2128618571425723714310 ~2004
2128628291425725658310 ~2004
2128693559425738711910 ~2004
2128796531425759306310 ~2004
2128833431425766686310 ~2004
21288928791703114303311 ~2005
2128924823425784964710 ~2004
2128945211425789042310 ~2004
21290793531277447611911 ~2005
21290904371277454262311 ~2005
2129184719425836943910 ~2004
21291905092980866712711 ~2006
21293000091703440007311 ~2005
2129341079425868215910 ~2004
2129369771425873954310 ~2004
21293903275536414850311 ~2007
2129489123425897824710 ~2004
2129533643425906728710 ~2004
2129559251425911850310 ~2004
21295748571277744914311 ~2005
21297938571277876314311 ~2005
21299102832129910283111 ~2006
21299488971277969338311 ~2005
Home
4.724.182 digits
e-mail
25-04-13