Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1503168851300633770310 ~2003
1503190079300638015910 ~2003
1503205103300641020710 ~2003
1503222239300644447910 ~2003
15032255833607741399311 ~2005
1503229381901937628710 ~2004
1503269533901961719910 ~2004
1503371951300674390310 ~2003
1503386051300677210310 ~2003
1503405023300681004710 ~2003
15034187333608204959311 ~2005
1503480239300696047910 ~2003
15034852332405576372911 ~2005
1503495803300699160710 ~2003
15035118591202809487311 ~2004
15036520492105112868711 ~2005
1503653363300730672710 ~2003
1503660299300732059910 ~2003
1503684053902210431910 ~2004
15037394991202991599311 ~2004
15037835991203026879311 ~2004
1503823103300764620710 ~2003
1503877079300775415910 ~2003
15039075431503907543111 ~2004
1503908963300781792710 ~2003
Exponent Prime Factor Digits Year
1503987011300797402310 ~2003
15039884277219144449711 ~2006
1503991871300798374310 ~2003
1504029119300805823910 ~2003
1504065551300813110310 ~2003
1504151393902490835910 ~2004
1504173119300834623910 ~2003
1504177523300835504710 ~2003
1504189943300837988710 ~2003
1504253417902552050310 ~2004
15042549771203403981711 ~2004
1504315223300863044710 ~2003
15043287672406926027311 ~2005
15043369272707806468711 ~2005
1504343063300868612710 ~2003
1504349279300869855910 ~2003
15046738794814956412911 ~2006
1504760459300952091910 ~2003
15047704671203816373711 ~2004
1504801973902881183910 ~2004
1504808243300961648710 ~2003
1504832941902899764710 ~2004
1504833923300966784710 ~2003
1504838591300967718310 ~2003
1504944733902966839910 ~2004
Exponent Prime Factor Digits Year
1504963871300992774310 ~2003
1505002199301000439910 ~2003
1505044631301008926310 ~2003
15050809011204064720911 ~2004
1505084291301016858310 ~2003
1505084351301016870310 ~2003
1505199791301039958310 ~2003
1505201039301040207910 ~2003
1505299223301059844710 ~2003
1505391323301078264710 ~2003
1505415479301083095910 ~2003
1505480591301096118310 ~2003
1505481143301096228710 ~2003
1505483579301096715910 ~2003
1505495471301099094310 ~2003
1505501219301100243910 ~2003
1505518633903311179910 ~2004
1505521403301104280710 ~2003
1505566511301113302310 ~2003
1505577611301115522310 ~2003
1505600737903360442310 ~2004
15056534811204522784911 ~2004
1505737451301147490310 ~2003
1505783033903469819910 ~2004
1505793323301158664710 ~2003
Exponent Prime Factor Digits Year
15058377791505837779111 ~2004
15058950432409432068911 ~2005
1505903603301180720710 ~2003
150593695318071243436112 ~2007
1505953703301190740710 ~2003
1505959493903575695910 ~2004
1505973263301194652710 ~2003
15059909571204792765711 ~2004
1505995703301199140710 ~2003
15060308475120504879911 ~2006
1506038783301207756710 ~2003
150604698114458051017712 ~2007
15061051491204884119311 ~2004
1506127523301225504710 ~2003
1506278723301255744710 ~2003
1506295799301259159910 ~2003
1506317339301263467910 ~2003
1506323639301264727910 ~2003
1506326411301265282310 ~2003
1506338843301267768710 ~2003
150643506724102961072112 ~2007
1506647843301329568710 ~2003
1506680951301336190310 ~2003
1507003703301400740710 ~2003
1507038191301407638310 ~2003
Home
4.933.056 digits
e-mail
25-07-20