Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1797704411359540882310 ~2003
1797713171359542634310 ~2003
17977399071438191925711 ~2005
1797796151359559230310 ~2003
17980060273236410848711 ~2006
1798043339359608667910 ~2003
17980506971078830418311 ~2004
1798094219359618843910 ~2003
1798152731359630546310 ~2003
17981580734315579375311 ~2006
17982091991798209199111 ~2005
17982577873236864016711 ~2006
17983097811078985868711 ~2004
1798314971359662994310 ~2003
1798361699359672339910 ~2003
1798370303359674060710 ~2003
17983860971079031658311 ~2004
1798410599359682119910 ~2003
17984136411079048184711 ~2004
17986163174316679160911 ~2006
1798679903359735980710 ~2003
1798750391359750078310 ~2003
17988314831798831483111 ~2005
1798927379359785475910 ~2003
1798953743359790748710 ~2003
Exponent Prime Factor Digits Year
1799023931359804786310 ~2003
1799032919359806583910 ~2003
1799047199359809439910 ~2003
17991091611079465496711 ~2004
1799177903359835580710 ~2003
1799185799359837159910 ~2003
1799214083359842816710 ~2003
1799215499359843099910 ~2003
17993048533958470676711 ~2006
1799317031359863406310 ~2003
1799349971359869994310 ~2003
1799434991359886998310 ~2003
17994644771079678686311 ~2004
1799540531359908106310 ~2003
1799576171359915234310 ~2003
1799677163359935432710 ~2003
1799838731359967746310 ~2003
1799952419359990483910 ~2003
1799968091359993618310 ~2003
1799991131359998226310 ~2003
18000470211440037616911 ~2005
1800143291360028658310 ~2003
18001461891440116951311 ~2005
1800155459360031091910 ~2003
18001727572520241859911 ~2005
Exponent Prime Factor Digits Year
18002563011080153780711 ~2004
1800297599360059519910 ~2003
1800322103360064420710 ~2003
1800323363360064672710 ~2003
1800369611360073922310 ~2003
18004043177201617268111 ~2006
1800411143360082228710 ~2003
18004599772520643967911 ~2005
1800468023360093604710 ~2003
18005631132880900980911 ~2005
1800673883360134776710 ~2003
1800689183360137836710 ~2003
1800941711360188342310 ~2003
1800945431360189086310 ~2003
1800997091360199418310 ~2003
1801003439360200687910 ~2003
18010057197564224019911 ~2007
1801012091360202418310 ~2003
1801044743360208948710 ~2003
1801049231360209846310 ~2003
18011958071801195807111 ~2005
1801335083360267016710 ~2003
1801410659360282131910 ~2003
1801472591360294518310 ~2003
1801477439360295487910 ~2003
Exponent Prime Factor Digits Year
1801501451360300290310 ~2003
1801615559360323111910 ~2003
1801617659360323531910 ~2003
1801651343360330268710 ~2003
18019046091441523687311 ~2005
1801953311360390662310 ~2003
1801977623360395524710 ~2003
1801986611360397322310 ~2003
1802033483360406696710 ~2003
18020786511441662920911 ~2005
1802206811360441362310 ~2003
1802223191360444638310 ~2003
1802337011360467402310 ~2003
1802341811360468362310 ~2003
1802455439360491087910 ~2003
1802552651360510530310 ~2003
18025898271442071861711 ~2005
18026030271442082421711 ~2005
18026486092523708052711 ~2005
1802671919360534383910 ~2003
1802729399360545879910 ~2003
18027900797571718331911 ~2007
18028456211081707372711 ~2004
1802857211360571442310 ~2003
18028627391802862739111 ~2005
Home
4.843.404 digits
e-mail
25-06-08