Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1557843121934705872710 ~2004
1557851759311570351910 ~2003
155786868721187014143312 ~2007
1557952043311590408710 ~2003
1558149431311629886310 ~2003
1558149557934889734310 ~2004
15581727415921056415911 ~2006
1558183619311636723910 ~2003
1558188143311637628710 ~2003
1558198403311639680710 ~2003
15582372072493179531311 ~2005
1558307453934984471910 ~2004
1558384031311676806310 ~2003
1558501523311700304710 ~2003
1558540811311708162310 ~2003
1558583759311716751910 ~2003
1558657873935194723910 ~2004
15586742391246939391311 ~2004
1558689701935213820710 ~2004
15586978971246958317711 ~2004
1558700651311740130310 ~2003
1558845083311769016710 ~2003
1558917803311783560710 ~2003
155892160115901000330312 ~2007
1558997039311799407910 ~2003
Exponent Prime Factor Digits Year
15590791491247263319311 ~2004
15590819211247265536911 ~2004
1559082491311816498310 ~2003
1559109263311821852710 ~2003
1559113151311822630310 ~2003
1559260739311852147910 ~2003
1559265563311853112710 ~2003
1559413319311882663910 ~2003
1559601863311920372710 ~2003
1559641103311928220710 ~2003
15596788937174522907911 ~2006
1559711039311942207910 ~2003
1559711221935826732710 ~2004
1559736611311947322310 ~2003
1559738857935843314310 ~2004
1559766119311953223910 ~2003
15597734691247818775311 ~2004
15597917112807625079911 ~2005
15598405071247872405711 ~2004
1559889563311977912710 ~2003
1559902559311980511910 ~2003
155993148110919520367112 ~2007
1559973251311994650310 ~2003
1560000839312000167910 ~2003
1560067511312013502310 ~2003
Exponent Prime Factor Digits Year
15600891192808160414311 ~2005
1560223079312044615910 ~2003
1560283973936170383910 ~2004
1560324851312064970310 ~2003
1560341231312068246310 ~2003
15604292896241717156111 ~2006
1560487751312097550310 ~2003
1560497231312099446310 ~2003
1560532019312106403910 ~2003
1560626897936376138310 ~2004
1560663719312132743910 ~2003
1560666839312133367910 ~2003
1560691571312138314310 ~2003
1560772859312154571910 ~2003
1560774791312154958310 ~2003
1560843983312168796710 ~2003
1560874321936524592710 ~2004
1561005437936603262310 ~2004
1561082063312216412710 ~2003
1561218839312243767910 ~2003
1561231319312246263910 ~2003
1561251113936750667910 ~2004
1561268651312253730310 ~2003
15613318611249065488911 ~2004
15613359733434939140711 ~2005
Exponent Prime Factor Digits Year
1561431491312286298310 ~2003
1561441103312288220710 ~2003
1561501811312300362310 ~2003
15616178231561617823111 ~2005
156163594722799884826312 ~2007
1561698059312339611910 ~2003
1561708139312341627910 ~2003
1561734743312346948710 ~2003
1561749719312349943910 ~2003
1561757663312351532710 ~2003
1561758113937054867910 ~2004
1561971311312394262310 ~2003
15619830431561983043111 ~2005
1562023091312404618310 ~2003
1562026237937215742310 ~2004
1562072663312414532710 ~2003
156208232311246992725712 ~2007
1562085611312417122310 ~2003
1562193551312438710310 ~2003
1562255399312451079910 ~2003
1562288951312457790310 ~2003
15624091271562409127111 ~2005
1562457791312491558310 ~2003
15624692413437432330311 ~2005
15625098677500047361711 ~2006
Home
4.933.056 digits
e-mail
25-07-20