Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2025639659405127931910 ~2004
20256559219318017236711 ~2007
2025715031405143006310 ~2004
2025903059405180611910 ~2004
2025917483405183496710 ~2004
2025931151405186230310 ~2004
20259514694457093231911 ~2006
2025954323405190864710 ~2004
2025967379405193475910 ~2004
20260313411215618804711 ~2005
2026033643405206728710 ~2004
2026126871405225374310 ~2004
20262088811215725328711 ~2005
2026242671405248534310 ~2004
20263071611215784296711 ~2005
2026357691405271538310 ~2004
20264268072026426807111 ~2005
2026427831405285566310 ~2004
20264451496079335447111 ~2007
2026451519405290303910 ~2004
2026486571405297314310 ~2004
2026635311405327062310 ~2004
2026672139405334427910 ~2004
2026714451405342890310 ~2004
2026751063405350212710 ~2004
Exponent Prime Factor Digits Year
2026850543405370108710 ~2004
20268656234864477495311 ~2006
20268740411216124424711 ~2005
20268770331216126219911 ~2005
20270251971621620157711 ~2005
2027040563405408112710 ~2004
2027043839405408767910 ~2004
2027045963405409192710 ~2004
2027166299405433259910 ~2004
2027182259405436451910 ~2004
2027263499405452699910 ~2004
2027292119405458423910 ~2004
2027345459405469091910 ~2004
20274183771216451026311 ~2005
2027468879405493775910 ~2004
2027600231405520046310 ~2004
20276120211622089616911 ~2005
2027612399405522479910 ~2004
20276846411216610784711 ~2005
20277146531216628791911 ~2005
2027754563405550912710 ~2004
2027962043405592408710 ~2004
2027995811405599162310 ~2004
20280089112028008911111 ~2005
2028051803405610360710 ~2004
Exponent Prime Factor Digits Year
20280649571216838974311 ~2005
20280791533244926644911 ~2006
2028136679405627335910 ~2004
2028245111405649022310 ~2004
2028343931405668786310 ~2004
2028350123405670024710 ~2004
2028358379405671675910 ~2004
2028370271405674054310 ~2004
202841080915821604310312 ~2008
2028559223405711844710 ~2004
2028582779405716555910 ~2004
2028661259405732251910 ~2004
2028773783405754756710 ~2004
2028792131405758426310 ~2004
20289223811217353428711 ~2005
20289230531217353831911 ~2005
2029106099405821219910 ~2004
20291228271623298261711 ~2005
202916316114609974759312 ~2008
2029164503405832900710 ~2004
2029166963405833392710 ~2004
2029215719405843143910 ~2004
2029230839405846167910 ~2004
20292438371217546302311 ~2005
2029266539405853307910 ~2004
Exponent Prime Factor Digits Year
2029296023405859204710 ~2004
2029298339405859667910 ~2004
2029344983405868996710 ~2004
2029353611405870722310 ~2004
2029407239405881447910 ~2004
20294360332841210446311 ~2006
20294381331217662879911 ~2005
2029440071405888014310 ~2004
2029497551405899510310 ~2004
2029507559405901511910 ~2004
2029510319405902063910 ~2004
2029517051405903410310 ~2004
2029522811405904562310 ~2004
20295660611217739636711 ~2005
2029624139405924827910 ~2004
2029669919405933983910 ~2004
2029740371405948074310 ~2004
2029745111405949022310 ~2004
2029778279405955655910 ~2004
2029809779405961955910 ~2004
2029908131405981626310 ~2004
2029985339405997067910 ~2004
2029989443405997888710 ~2004
20300044673654008040711 ~2006
2030007839406001567910 ~2004
Home
4.828.532 digits
e-mail
25-06-01