Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
17090483811367238704911 ~2005
1709084879341816975910 ~2003
1709122799341824559910 ~2003
1709257463341851492710 ~2003
1709292779341858555910 ~2003
1709342399341868479910 ~2003
1709506091341901218310 ~2003
1709514791341902958310 ~2003
1709517539341903507910 ~2003
1709531003341906200710 ~2003
170958936112309043399312 ~2007
17095970335128791099111 ~2006
170961334112309216055312 ~2007
1709656703341931340710 ~2003
1709698379341939675910 ~2003
17097637931025858275911 ~2004
1709770763341954152710 ~2003
1709960111341992022310 ~2003
17099619771367969581711 ~2005
17100480317182201730311 ~2006
17100686234104164695311 ~2006
1710100079342020015910 ~2003
17101464411368117152911 ~2005
1710147143342029428710 ~2003
1710327803342065560710 ~2003
Exponent Prime Factor Digits Year
1710370043342074008710 ~2003
1710430583342086116710 ~2003
1710498623342099724710 ~2003
17105929011368474320911 ~2005
1710630143342126028710 ~2003
1710663863342132772710 ~2003
1710665279342133055910 ~2003
17107626371026457582311 ~2004
17108185739580584008911 ~2007
17108343194106002365711 ~2006
1710848831342169766310 ~2003
17108722574106093416911 ~2006
17109445131026566707911 ~2004
1710969311342193862310 ~2003
17109870171026592210311 ~2004
1711066499342213299910 ~2003
1711090259342218051910 ~2003
1711113731342222746310 ~2003
1711113923342222784710 ~2003
171112993316426847356912 ~2007
1711161059342232211910 ~2003
17112090234449143459911 ~2006
1711281311342256262310 ~2003
1711373819342274763910 ~2003
1711375691342275138310 ~2003
Exponent Prime Factor Digits Year
17114016075818765463911 ~2006
1711496051342299210310 ~2003
1711514999342302999910 ~2003
1711528883342305776710 ~2003
17116650191711665019111 ~2005
1711720343342344068710 ~2003
1711775771342355154310 ~2003
1711775963342355192710 ~2003
1711873763342374752710 ~2003
1711907783342381556710 ~2003
1711940663342388132710 ~2003
17119408871711940887111 ~2005
1711999571342399914310 ~2003
17120491731027229503911 ~2004
1712065991342413198310 ~2003
1712098991342419798310 ~2003
1712184119342436823910 ~2003
1712200403342440080710 ~2003
1712217779342443555910 ~2003
1712284103342456820710 ~2003
1712373359342474671910 ~2003
1712387531342477506310 ~2003
1712406599342481319910 ~2003
17124184931027451095911 ~2004
17124246418219638276911 ~2006
Exponent Prime Factor Digits Year
17124406371027464382311 ~2004
1712441303342488260710 ~2003
1712486879342497375910 ~2003
1712493743342498748710 ~2003
1712508431342501686310 ~2003
17125515312740082449711 ~2005
1712718443342543688710 ~2003
17127279431712727943111 ~2005
1712788463342557692710 ~2003
1712834891342566978310 ~2003
17128496471712849647111 ~2005
1712854679342570935910 ~2003
17129176311370334104911 ~2005
1712960003342592000710 ~2003
1712980991342596198310 ~2003
17130699771027841986311 ~2004
17130840971027850458311 ~2004
1713084671342616934310 ~2003
1713088931342617786310 ~2003
1713124043342624808710 ~2003
17131470411027888224711 ~2004
17132061131027923667911 ~2004
17132578512741212561711 ~2005
17132667471370613397711 ~2005
17132826674111878400911 ~2006
Home
4.933.056 digits
e-mail
25-07-20