Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
20405410331224324619911 ~2005
2040570359408114071910 ~2004
20407094232040709423111 ~2005
2040776711408155342310 ~2004
20408001296122400387111 ~2007
20408491571224509494311 ~2005
2040868871408173774310 ~2004
20409230211224553812711 ~2005
20409925331224595519911 ~2005
2041058423408211684710 ~2004
20411267411224676044711 ~2005
2041131863408226372710 ~2004
20414086931224845215911 ~2005
20414569931224874195911 ~2005
2041518119408303623910 ~2004
20415456891633236551311 ~2005
2041569443408313888710 ~2004
2041751891408350378310 ~2004
20418058497758862226311 ~2007
20418273736125482119111 ~2007
2041885031408377006310 ~2004
2041893611408378722310 ~2004
2041915511408383102310 ~2004
2041928711408385742310 ~2004
2041938719408387743910 ~2004
Exponent Prime Factor Digits Year
2041987163408397432710 ~2004
2042011739408402347910 ~2004
2042033963408406792710 ~2004
20421383411225283004711 ~2005
2042157179408431435910 ~2004
2042181371408436274310 ~2004
2042231699408446339910 ~2004
2042241083408448216710 ~2004
20423872791633909823311 ~2005
20424411432042441143111 ~2005
2042450759408490151910 ~2004
2042472563408494512710 ~2004
2042533019408506603910 ~2004
2042556599408511319910 ~2004
2042573243408514648710 ~2004
20425961331225557679911 ~2005
2042646563408529312710 ~2004
2042771123408554224710 ~2004
2042804531408560906310 ~2004
2042893343408578668710 ~2004
2042895311408579062310 ~2004
2042949563408589912710 ~2004
20429699531225781971911 ~2005
2043017111408603422310 ~2004
20430411371225824682311 ~2005
Exponent Prime Factor Digits Year
2043076943408615388710 ~2004
2043093743408618748710 ~2004
2043128831408625766310 ~2004
2043160271408632054310 ~2004
2043203303408640660710 ~2004
2043258719408651743910 ~2004
2043318059408663611910 ~2004
20433741172860723763911 ~2006
2043498323408699664710 ~2004
20435318211226119092711 ~2005
2043545303408709060710 ~2004
2043573923408714784710 ~2004
2043579071408715814310 ~2004
20436395091634911607311 ~2005
2043707579408741515910 ~2004
2043757043408751408710 ~2004
20438371793678906922311 ~2006
2043845543408769108710 ~2004
20439290592043929059111 ~2005
2044026623408805324710 ~2004
2044046843408809368710 ~2004
20440968292861735560711 ~2006
20441058312044105831111 ~2005
2044173179408834635910 ~2004
2044174343408834868710 ~2004
Exponent Prime Factor Digits Year
20441807171226508430311 ~2005
2044419743408883948710 ~2004
20444368371635549469711 ~2005
2044706123408941224710 ~2004
20447977313680635915911 ~2006
2044898543408979708710 ~2004
20449340571635947245711 ~2005
20449846371226990782311 ~2005
2044992083408998416710 ~2004
20450329491636026359311 ~2005
2045059223409011844710 ~2004
2045116631409023326310 ~2004
20451844331227110659911 ~2005
2045215883409043176710 ~2004
2045333963409066792710 ~2004
20454411473681794064711 ~2006
2045626619409125323910 ~2004
2045629979409125995910 ~2004
2045654771409130954310 ~2004
2045739911409147982310 ~2004
2045790443409158088710 ~2004
20457922497774010546311 ~2007
2045802179409160435910 ~2004
2046003143409200628710 ~2004
2046073703409214740710 ~2004
Home
4.828.532 digits
e-mail
25-06-01