Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1996778363399355672710 ~2004
1996875371399375074310 ~2004
19969221771597537741711 ~2005
1996934111399386822310 ~2004
1996969703399393940710 ~2004
1996970483399394096710 ~2004
19969759011198185540711 ~2005
19970247071997024707111 ~2005
1997059331399411866310 ~2004
1997153003399430600710 ~2004
1997203451399440690310 ~2004
1997223479399444695910 ~2004
1997230919399446183910 ~2004
19972830111597826408911 ~2005
1997379599399475919910 ~2004
1997392343399478468710 ~2004
19974230811198453848711 ~2005
1997429519399485903910 ~2004
1997526131399505226310 ~2004
19975360191598028815311 ~2005
19975767411198546044711 ~2005
1997659463399531892710 ~2004
1997752643399550528710 ~2004
19977742211198664532711 ~2005
19978674371198720462311 ~2005
Exponent Prime Factor Digits Year
1997872463399574492710 ~2004
19979101131198746067911 ~2005
1997947043399589408710 ~2004
1997965223399593044710 ~2004
19980438771198826326311 ~2005
1998142271399628454310 ~2004
1998145223399629044710 ~2004
1998265259399653051910 ~2004
19982863971598629117711 ~2005
19983446531199006791911 ~2005
1998357983399671596710 ~2004
19984324971598745997711 ~2005
1998448799399689759910 ~2004
1998461123399692224710 ~2004
19984932611199095956711 ~2005
1998523979399704795910 ~2004
1998596123399719224710 ~2004
19986441771598915341711 ~2005
19988159391599052751311 ~2005
19988517134397473768711 ~2006
19988817371199329042311 ~2005
1998894011399778802310 ~2004
19989247496396559196911 ~2007
19990195491599215639311 ~2005
1999052663399810532710 ~2004
Exponent Prime Factor Digits Year
19991191791599295343311 ~2005
19992610933198817748911 ~2006
1999302551399860510310 ~2004
1999408679399881735910 ~2004
1999427159399885431910 ~2004
1999459883399891976710 ~2004
1999531463399906292710 ~2004
19997467971199848078311 ~2005
1999820051399964010310 ~2004
1999891703399978340710 ~2004
1999965683399993136710 ~2004
19999948331199996899911 ~2005
2000002331400000466310 ~2004
2000084771400016954310 ~2004
2000127659400025531910 ~2004
20001290094800309621711 ~2006
2000162711400032542310 ~2004
2000170883400034176710 ~2004
2000322179400064435910 ~2004
2000399699400079939910 ~2004
2000471003400094200710 ~2004
2000544443400108888710 ~2004
20005692131200341527911 ~2005
2000574659400114931910 ~2004
20006883973201101435311 ~2006
Exponent Prime Factor Digits Year
2000728643400145728710 ~2004
20007846771200470806311 ~2005
20008800411200528024711 ~2005
2000880551400176110310 ~2004
2000888531400177706310 ~2004
2000933171400186634310 ~2004
2000944331400188866310 ~2004
2000965979400193195910 ~2004
20009704971600776397711 ~2005
2001031031400206206310 ~2004
200107693344423907912712 ~2009
2001173483400234696710 ~2004
2001196271400239254310 ~2004
2001374339400274867910 ~2004
2001388463400277692710 ~2004
20014380715203738984711 ~2006
2001521003400304200710 ~2004
2001528131400305626310 ~2004
2001665411400333082310 ~2004
20016980091601358407311 ~2005
2001769751400353950310 ~2004
20017770596405686588911 ~2007
2001793439400358687910 ~2004
20018015233202882436911 ~2006
20018383811201103028711 ~2005
Home
4.843.404 digits
e-mail
25-06-08