Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
25350594592028047567311 ~2006
2535064079507012815910 ~2004
25351018931521061135911 ~2006
2535229871507045974310 ~2004
2535282779507056555910 ~2004
2535338423507067684710 ~2004
2535348323507069664710 ~2004
25353526636084846391311 ~2007
2535433139507086627910 ~2004
25354519514563813511911 ~2007
25355453571521327214311 ~2006
2535665519507133103910 ~2004
25356714772028537181711 ~2006
25357768512535776851111 ~2006
2535848459507169691910 ~2004
2536170503507234100710 ~2004
2536240799507248159910 ~2004
2536322699507264539910 ~2004
25363689312536368931111 ~2006
2536429403507285880710 ~2004
2536431791507286358310 ~2004
2536432751507286550310 ~2004
2536549259507309851910 ~2004
2536689539507337907910 ~2004
25367335274058773643311 ~2007
Exponent Prime Factor Digits Year
2536754579507350915910 ~2004
2536766339507353267910 ~2004
2536790363507358072710 ~2004
25369523571522171414311 ~2006
25370108692029608695311 ~2006
2537070143507414028710 ~2004
25370849411522250964711 ~2006
2537112659507422531910 ~2004
2537197823507439564710 ~2004
2537205311507441062310 ~2004
2537273339507454667910 ~2004
2537288639507457727910 ~2004
2537421863507484372710 ~2004
2537501639507500327910 ~2004
253753693310150147732112 ~2008
2537609279507521855910 ~2004
2537662019507532403910 ~2004
253768516919793944318312 ~2008
2537705231507541046310 ~2004
2537745191507549038310 ~2004
25378497011522709820711 ~2006
2537866091507573218310 ~2004
25379771531522786291911 ~2006
25380037811522802268711 ~2006
2538005279507601055910 ~2004
Exponent Prime Factor Digits Year
25380210914568437963911 ~2007
2538031403507606280710 ~2004
2538163151507632630310 ~2004
2538178763507635752710 ~2004
25383609976092066392911 ~2007
25384166692030733335311 ~2006
25385533371523132002311 ~2006
25385935931523156155911 ~2006
2538748571507749714310 ~2004
2538969683507793936710 ~2004
2539142471507828494310 ~2004
25392107211523526432711 ~2006
2539412003507882400710 ~2004
2539455059507891011910 ~2004
25395678371523740702311 ~2006
2539633319507926663910 ~2004
2539716551507943310310 ~2004
2539717391507943478310 ~2004
2539724339507944867910 ~2004
253982975912191182843312 ~2008
25399346516603830092711 ~2007
2540121659508024331910 ~2004
2540212271508042454310 ~2004
2540333591508066718310 ~2004
2540416871508083374310 ~2004
Exponent Prime Factor Digits Year
2540535611508107122310 ~2004
2540641679508128335910 ~2004
2540652671508130534310 ~2004
2540666363508133272710 ~2004
25407220274065155243311 ~2007
2540741543508148308710 ~2004
2540767451508153490310 ~2004
2540777051508155410310 ~2004
2540793239508158647910 ~2004
25408082472540808247111 ~2006
2541353183508270636710 ~2004
2541370883508274176710 ~2004
2541415139508283027910 ~2004
25415413072033233045711 ~2006
2541678791508335758310 ~2004
2541739019508347803910 ~2004
2541779351508355870310 ~2004
254182204334568779784912 ~2009
25420854614067336737711 ~2007
2542091459508418291910 ~2004
25420941432542094143111 ~2006
2542094843508418968710 ~2004
2542178651508435730310 ~2004
2542223219508444643910 ~2004
2542265723508453144710 ~2004
Home
4.724.182 digits
e-mail
25-04-13