Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2542274363508454872710 ~2004
25423488892033879111311 ~2006
25423739474067798315311 ~2007
2542386419508477283910 ~2004
2542414163508482832710 ~2004
2542560539508512107910 ~2004
25427182811525630968711 ~2006
2542786931508557386310 ~2004
25428024533559923434311 ~2007
2542818359508563671910 ~2004
2542973819508594763910 ~2004
2542995443508599088710 ~2004
2543138219508627643910 ~2004
2543281211508656242310 ~2004
25433209931525992595911 ~2006
2543471891508694378310 ~2004
2543475839508695167910 ~2004
2543579999508715999910 ~2004
2543728091508745618310 ~2004
2543761691508752338310 ~2004
2543800211508760042310 ~2004
25439031112035122488911 ~2006
25439114712543911471111 ~2006
25441182674070589227311 ~2007
2544203699508840739910 ~2004
Exponent Prime Factor Digits Year
25442630171526557810311 ~2006
25442962331526577739911 ~2006
2544310019508862003910 ~2004
25443183731526591023911 ~2006
2544425459508885091910 ~2004
2544492011508898402310 ~2004
2544634019508926803910 ~2004
25447729072035818325711 ~2006
2544784811508956962310 ~2004
25448087931526885275911 ~2006
25448539912035883192911 ~2006
2544939191508987838310 ~2004
25449934811526996088711 ~2006
2544999071508999814310 ~2004
2545046051509009210310 ~2004
2545080959509016191910 ~2004
2545147019509029403910 ~2004
25451519093563212672711 ~2007
2545186223509037244710 ~2004
25451880011527112800711 ~2006
25452138731527128323911 ~2006
25453970211527238212711 ~2006
2545580123509116024710 ~2004
25456181931527370915911 ~2006
2545764323509152864710 ~2004
Exponent Prime Factor Digits Year
25458301492036664119311 ~2006
2545834883509166976710 ~2004
25458513531527510811911 ~2006
25459012612036721008911 ~2006
2546012783509202556710 ~2004
25460260514073641681711 ~2007
2546044619509208923910 ~2004
2546052731509210546310 ~2004
2546053439509210687910 ~2004
2546146979509229395910 ~2004
2546229659509245931910 ~2004
2546272691509254538310 ~2004
2546369723509273944710 ~2004
25464310931527858655911 ~2006
2546563763509312752710 ~2004
25465882011527952920711 ~2006
25466089379677113960711 ~2008
25466282099677187194311 ~2008
2546647511509329502310 ~2004
2546690039509338007910 ~2004
2546699663509339932710 ~2004
2546719163509343832710 ~2004
2546885111509377022310 ~2004
25468894792037511583311 ~2006
25470523811528231428711 ~2006
Exponent Prime Factor Digits Year
2547111239509422247910 ~2004
25471572893566020204711 ~2007
2547192071509438414310 ~2004
2547377939509475587910 ~2004
2547434723509486944710 ~2004
25474631573566448419911 ~2007
2547480791509496158310 ~2004
25475333272038026661711 ~2006
2547644699509528939910 ~2004
25477703272038216261711 ~2006
2547995423509599084710 ~2004
2548016963509603392710 ~2004
2548048103509609620710 ~2004
2548088723509617744710 ~2004
2548190891509638178310 ~2004
254822599110702549162312 ~2008
2548285511509657102310 ~2004
2548302671509660534310 ~2004
2548341671509668334310 ~2004
2548353383509670676710 ~2004
25483544812038683584911 ~2006
2548360271509672054310 ~2004
2548466003509693200710 ~2004
25486013992038881119311 ~2006
25486603912038928312911 ~2006
Home
4.724.182 digits
e-mail
25-04-13