Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
25488035272039042821711 ~2006
2548848959509769791910 ~2004
2548890143509778028710 ~2004
2548971059509794211910 ~2004
25489714931529382895911 ~2006
2548984103509796820710 ~2004
2549034479509806895910 ~2004
2549052563509810512710 ~2004
2549113163509822632710 ~2004
2549121059509824211910 ~2004
2549136983509827396710 ~2004
25491701872039336149711 ~2006
2549379671509875934310 ~2004
25494218274588959288711 ~2007
2549624939509924987910 ~2004
2549697239509939447910 ~2004
25497056811529823408711 ~2006
254972630314278467296912 ~2008
25497550792039804063311 ~2006
25497701171529862070311 ~2006
2549864363509972872710 ~2004
2549884223509976844710 ~2004
2550064799510012959910 ~2004
2550073451510014690310 ~2004
255018046912240866251312 ~2008
Exponent Prime Factor Digits Year
25502082314590374815911 ~2007
2550277571510055514310 ~2004
2550375323510075064710 ~2004
2550469511510093902310 ~2004
2550569663510113932710 ~2004
2550588563510117712710 ~2004
25508236612040658928911 ~2006
25509666971530580018311 ~2006
2550966791510193358310 ~2004
2551071443510214288710 ~2004
2551092443510218488710 ~2004
2551125491510225098310 ~2004
25511782131530706927911 ~2006
2551181603510236320710 ~2004
2551235723510247144710 ~2004
2551369559510273911910 ~2004
2551398803510279760710 ~2004
2551426763510285352710 ~2004
2551469579510293915910 ~2004
2551475471510295094310 ~2004
2551496963510299392710 ~2004
2551572623510314524710 ~2004
2551588211510317642310 ~2004
2551619831510323966310 ~2004
25520647371531238842311 ~2006
Exponent Prime Factor Digits Year
2552072423510414484710 ~2004
2552166719510433343910 ~2004
2552193359510438671910 ~2004
25522087272552208727111 ~2006
2552248823510449764710 ~2004
25522521611531351296711 ~2006
2552286791510457358310 ~2004
2552329583510465916710 ~2004
255235177310209407092112 ~2008
25524124131531447447911 ~2006
25524571611531474296711 ~2006
25525161171531509670311 ~2006
2552602103510520420710 ~2004
2552671871510534374310 ~2004
2552767559510553511910 ~2004
2552897219510579443910 ~2004
2552925911510585182310 ~2004
2552930903510586180710 ~2004
25529313771531758826311 ~2006
2552933711510586742310 ~2004
2553090383510618076710 ~2004
2553246743510649348710 ~2004
2553264491510652898310 ~2004
2553284483510656896710 ~2004
25532910672553291067111 ~2006
Exponent Prime Factor Digits Year
2553294179510658835910 ~2004
2553411683510682336710 ~2004
2553447119510689423910 ~2004
2553540179510708035910 ~2004
2553586859510717371910 ~2004
25536634912042930792911 ~2006
2553721151510744230310 ~2004
25538062017661418603111 ~2007
2553811919510762383910 ~2004
25538452011532307120711 ~2006
2553900623510780124710 ~2004
2554069139510813827910 ~2004
25541599912043327992911 ~2006
2554269131510853826310 ~2004
2554314491510862898310 ~2004
2554374731510874946310 ~2004
2554661363510932272710 ~2004
25546899611532813976711 ~2006
2554832639510966527910 ~2004
2554845131510969026310 ~2004
2554866719510973343910 ~2004
2554900163510980032710 ~2004
2554902719510980543910 ~2004
25549401731532964103911 ~2006
2554954211510990842310 ~2004
Home
4.724.182 digits
e-mail
25-04-13