Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2577976283515595256710 ~2004
2578237859515647571910 ~2004
25783511171547010670311 ~2006
2578371443515674288710 ~2004
2578404299515680859910 ~2004
25784406371547064382311 ~2006
2578501259515700251910 ~2004
2578510043515702008710 ~2004
2578582631515716526310 ~2004
2578816763515763352710 ~2004
2578901999515780399910 ~2004
25790242214126438753711 ~2007
25790855811547451348711 ~2006
25793895074642901112711 ~2007
25794503998254241276911 ~2007
25795678912063654312911 ~2006
2579591771515918354310 ~2004
2579628731515925746310 ~2004
2579780363515956072710 ~2004
2579814491515962898310 ~2004
2579845283515969056710 ~2004
2579865971515973194310 ~2004
2580066539516013307910 ~2004
2580084971516016994310 ~2004
25801134292064090743311 ~2006
Exponent Prime Factor Digits Year
2580325211516065042310 ~2004
2580399071516079814310 ~2004
2580608399516121679910 ~2004
2580616631516123326310 ~2004
2580692183516138436710 ~2004
2580717071516143414310 ~2004
25807679516709996672711 ~2007
2580812879516162575910 ~2004
25808226611548493596711 ~2006
25808331411548499884711 ~2006
25808492692064679415311 ~2006
2580900671516180134310 ~2004
2581070351516214070310 ~2004
2581188899516237779910 ~2004
25811890192064951215311 ~2006
2581190063516238012710 ~2004
2581216223516243244710 ~2004
2581252259516250451910 ~2004
2581371311516274262310 ~2004
2581441679516288335910 ~2004
25814763897744429167111 ~2007
2581699091516339818310 ~2004
2581703339516340667910 ~2004
2581749959516349991910 ~2004
2581887263516377452710 ~2004
Exponent Prime Factor Digits Year
25819091811549145508711 ~2006
2581928903516385780710 ~2004
25819458131549167487911 ~2006
2582001659516400331910 ~2004
2582158259516431651910 ~2004
25821875411549312524711 ~2006
2582335919516467183910 ~2004
2582341343516468268710 ~2004
25825033331549501999911 ~2006
2582619491516523898310 ~2004
2582675951516535190310 ~2004
2582722379516544475910 ~2004
2582750231516550046310 ~2004
25827745312066219624911 ~2006
2582843843516568768710 ~2005
2583120971516624194310 ~2005
25831650371549899022311 ~2006
25831721811549903308711 ~2006
25833793612066703488911 ~2006
2583473219516694643910 ~2005
2583488723516697744710 ~2005
2583546743516709348710 ~2005
2583573071516714614310 ~2005
2583593891516718778310 ~2005
25836179232583617923111 ~2006
Exponent Prime Factor Digits Year
25836652074650597372711 ~2007
2583721643516744328710 ~2005
2583744851516748970310 ~2005
25840089611550405376711 ~2006
2584104923516820984710 ~2005
2584129799516825959910 ~2005
2584260179516852035910 ~2005
25842651412067412112911 ~2006
25843746011550624760711 ~2006
2584436843516887368710 ~2005
2584444991516888998310 ~2005
2584647371516929474310 ~2005
2584843091516968618310 ~2005
2585031791517006358310 ~2005
2585169803517033960710 ~2005
2585252291517050458310 ~2005
2585351399517070279910 ~2005
2585391551517078310310 ~2005
25855050171551303010311 ~2006
25855107896205225893711 ~2007
2585535611517107122310 ~2005
2585740463517148092710 ~2005
2585799899517159979910 ~2005
2585872823517174564710 ~2005
25858933571551536014311 ~2006
Home
4.724.182 digits
e-mail
25-04-13