Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2860530311572106062310 ~2005
2860555739572111147910 ~2005
2860829879572165975910 ~2005
28608808512860880851111 ~2007
2860890731572178146310 ~2005
28609036571716542194311 ~2006
2860906739572181347910 ~2005
2860907459572181491910 ~2005
2860933643572186728710 ~2005
2861120183572224036710 ~2005
2861124023572224804710 ~2005
2861258843572251768710 ~2005
2861279903572255980710 ~2005
28612853331716771199911 ~2006
28612925212289034016911 ~2006
28613867996867328317711 ~2007
2861475251572295050310 ~2005
2861487263572297452710 ~2005
286162326711446493068112 ~2008
2861661503572332300710 ~2005
2861972891572394578310 ~2005
28621362731717281763911 ~2006
2862192551572438510310 ~2005
28624904392289992351311 ~2006
28625500571717530034311 ~2006
Exponent Prime Factor Digits Year
2862629219572525843910 ~2005
28626359872290108789711 ~2006
2862969359572593871910 ~2005
28630034212290402736911 ~2006
2863099619572619923910 ~2005
2863104059572620811910 ~2005
2863113719572622743910 ~2005
28631323315153638195911 ~2007
2863291751572658350310 ~2005
28634280774008799307911 ~2007
28634844611718090676711 ~2006
2863584803572716960710 ~2005
28636975611718218536711 ~2006
28637655371718259322311 ~2006
28637949171718276950311 ~2006
28639089892291127191311 ~2006
28639197771718351866311 ~2006
286401844911456073796112 ~2008
28642011674582721867311 ~2007
2864405759572881151910 ~2005
2864548751572909750310 ~2005
2864591771572918354310 ~2005
2864593019572918603910 ~2005
28646047731718762863911 ~2006
2864705771572941154310 ~2005
Exponent Prime Factor Digits Year
28648168696302597111911 ~2007
28648174011718890440711 ~2006
2864851943572970388710 ~2005
28648992074583838731311 ~2007
2864914463572982892710 ~2005
2864917799572983559910 ~2005
2864979503572995900710 ~2005
2865010163573002032710 ~2005
2865021899573004379910 ~2005
28650287571719017254311 ~2006
28650624074584099851311 ~2007
28650944094011132172711 ~2007
28651770196876424845711 ~2008
2865276971573055394310 ~2005
28653035995157546478311 ~2007
2865311483573062296710 ~2005
2865348803573069760710 ~2005
286550132360175527783112 ~2010
28655226174011731663911 ~2007
28655347672292427813711 ~2006
2865542843573108568710 ~2005
2865579539573115907910 ~2005
2865726551573145310310 ~2005
2865792851573158570310 ~2005
2865918239573183647910 ~2005
Exponent Prime Factor Digits Year
28659264292292741143311 ~2006
2865934679573186935910 ~2005
28659632531719577951911 ~2006
2865989663573197932710 ~2005
28659987771719599266311 ~2006
28660593971719635638311 ~2006
28660720931719643255911 ~2006
286611265113757340724912 ~2008
2866127279573225455910 ~2005
28661784774012649867911 ~2007
2866423583573284716710 ~2005
2866518491573303698310 ~2005
28665328972293226317711 ~2006
28666769931720006195911 ~2006
28669612619174276035311 ~2008
28670080131720204807911 ~2006
2867502119573500423910 ~2005
2867520371573504074310 ~2005
2867592179573518435910 ~2005
2867689439573537887910 ~2005
28680200092294416007311 ~2006
28680851512294468120911 ~2006
2868085679573617135910 ~2005
2868163223573632644710 ~2005
2868181583573636316710 ~2005
Home
4.724.182 digits
e-mail
25-04-13