Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2600024711520004942310 ~2005
2600057363520011472710 ~2005
2600082539520016507910 ~2005
2600144159520028831910 ~2005
26003110731560186643911 ~2006
2600403191520080638310 ~2005
2600454539520090907910 ~2005
2600471039520094207910 ~2005
2600473451520094690310 ~2005
2600490311520098062310 ~2005
26005338674680960960711 ~2007
2600555291520111058310 ~2005
26006252212080500176911 ~2006
2600793731520158746310 ~2005
2600794403520158880710 ~2005
26008040212080643216911 ~2006
2600903759520180751910 ~2005
2600981723520196344710 ~2005
2600985899520197179910 ~2005
2601076403520215280710 ~2005
2601095279520219055910 ~2005
2601130019520226003910 ~2005
2601130943520226188710 ~2005
2601184259520236851910 ~2005
26011993394682158810311 ~2007
Exponent Prime Factor Digits Year
260124337123411190339112 ~2009
2601292163520258432710 ~2005
2601329051520265810310 ~2005
2601371159520274231910 ~2005
2601393803520278760710 ~2005
2601420023520284004710 ~2005
26014252131560855127911 ~2006
26015521971560931318311 ~2006
2601593531520318706310 ~2005
2601710879520342175910 ~2005
26017714931561062895911 ~2006
2601776591520355318310 ~2005
2601913859520382771910 ~2005
2601921071520384214310 ~2005
2601924491520384898310 ~2005
26019511731561170703911 ~2006
260195554714570951063312 ~2008
2601985559520397111910 ~2005
2602063391520412678310 ~2005
26021598171561295890311 ~2006
26021932331561315939911 ~2006
2602262483520452496710 ~2005
2602269011520453802310 ~2005
2602277003520455400710 ~2005
2602284551520456910310 ~2005
Exponent Prime Factor Digits Year
26022960772081836861711 ~2006
26024700292081976023311 ~2006
2602487819520497563910 ~2005
2602489751520497950310 ~2005
2602585031520517006310 ~2005
2602658339520531667910 ~2005
260267958712492862017712 ~2008
2602739099520547819910 ~2005
2602800719520560143910 ~2005
2602866011520573202310 ~2005
2602873271520574654310 ~2005
2602893743520578748710 ~2005
26029215971561752958311 ~2006
26031310731561878643911 ~2006
2603149859520629971910 ~2005
2603264231520652846310 ~2005
26032677072603267707111 ~2006
2603317511520663502310 ~2005
26033402411562004144711 ~2006
2603369291520673858310 ~2005
2603374379520674875910 ~2005
2603419991520683998310 ~2005
2603537399520707479910 ~2005
2603749691520749938310 ~2005
260375089343222264823912 ~2009
Exponent Prime Factor Digits Year
260376490912498071563312 ~2008
2603784383520756876710 ~2005
2604071471520814294310 ~2005
26043350232604335023111 ~2006
2604413639520882727910 ~2005
2604615311520923062310 ~2005
2604648023520929604710 ~2005
26046591772083727341711 ~2006
26046919611562815176711 ~2006
26047298472604729847111 ~2006
26048266992604826699111 ~2006
2604995483520999096710 ~2005
26050931812084074544911 ~2006
2605149203521029840710 ~2005
2605278419521055683910 ~2005
260551159318759683469712 ~2008
26057556411563453384711 ~2006
2605758383521151676710 ~2005
2605867391521173478310 ~2005
26061254938339601577711 ~2007
2606364671521272934310 ~2005
26063937712085115016911 ~2006
26064067973648969515911 ~2007
2606435963521287192710 ~2005
26066160171563969610311 ~2006
Home
4.724.182 digits
e-mail
25-04-13