Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2102639603420527920710 ~2004
21027660131261659607911 ~2005
21028491073364558571311 ~2006
21028700511682296040911 ~2005
2102879819420575963910 ~2004
2102886563420577312710 ~2004
2103059771420611954310 ~2004
2103143963420628792710 ~2004
2103255239420651047910 ~2004
2103347483420669496710 ~2004
2103444911420688982310 ~2004
2103581999420716399910 ~2004
2103618311420723662310 ~2004
2103632159420726431910 ~2004
21036600591682928047311 ~2005
2103744119420748823910 ~2004
2103817799420763559910 ~2004
2103835199420767039910 ~2004
21038593211262315592711 ~2005
2103871631420774326310 ~2004
2103940211420788042310 ~2004
21039462672103946267111 ~2006
21039922211262395332711 ~2005
2104015451420803090310 ~2004
21040822131262449327911 ~2005
Exponent Prime Factor Digits Year
21041183211683294656911 ~2005
2104123319420824663910 ~2004
210413702923145507319112 ~2008
21041511171262490670311 ~2005
2104173119420834623910 ~2004
2104372043420874408710 ~2004
21044212696313263807111 ~2007
2104525151420905030310 ~2004
2104538291420907658310 ~2004
2104595159420919031910 ~2004
2104694159420938831910 ~2004
2104725803420945160710 ~2004
21047719611262863176711 ~2005
2104856951420971390310 ~2004
2104907891420981578310 ~2004
21049446312104944631111 ~2006
210500015311788000856912 ~2007
2105070839421014167910 ~2004
2105141099421028219910 ~2004
21051529675473397714311 ~2007
21051737531263104251911 ~2005
21052161371263129682311 ~2005
2105228591421045718310 ~2004
2105318219421063643910 ~2004
2105337359421067471910 ~2004
Exponent Prime Factor Digits Year
2105350883421070176710 ~2004
21053577313789643915911 ~2006
2105468363421093672710 ~2004
21055427298422170916111 ~2007
2105568611421113722310 ~2004
21055851373368936219311 ~2006
2105659859421131971910 ~2004
2105746631421149326310 ~2004
2105780783421156156710 ~2004
2105822843421164568710 ~2004
2105860343421172068710 ~2004
21058799571263527974311 ~2005
2106027743421205548710 ~2004
21060525171263631510311 ~2005
21061188771263671326311 ~2005
21061649595054795901711 ~2006
21062406591684992527311 ~2005
2106242291421248458310 ~2004
2106286271421257254310 ~2004
21063454571263807274311 ~2005
2106445931421289186310 ~2004
2106569999421313999910 ~2004
21065967611263958056711 ~2005
21068834473371013515311 ~2006
2106904451421380890310 ~2004
Exponent Prime Factor Digits Year
2107012811421402562310 ~2004
2107020659421404131910 ~2004
2107026671421405334310 ~2004
2107039859421407971910 ~2004
21071377573371420411311 ~2006
21072230331264333819911 ~2005
21072671091685813687311 ~2005
2107385411421477082310 ~2004
2107394339421478867910 ~2004
2107405259421481051910 ~2004
2107475819421495163910 ~2004
2107508159421501631910 ~2004
2107620491421524098310 ~2004
21076895331264613719911 ~2005
21077617811264657068711 ~2005
21078234134637211508711 ~2006
21079022113372643537711 ~2006
2107928411421585682310 ~2004
21079372911686349832911 ~2005
21079783392107978339111 ~2006
21080210391686416831311 ~2005
2108136743421627348710 ~2004
21081927411686554192911 ~2005
21082227593794800966311 ~2006
210828181126986007180912 ~2008
Home
4.843.404 digits
e-mail
25-06-08