Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
26827038971609622338311 ~2006
2682719423536543884710 ~2005
2682926843536585368710 ~2005
26830182312683018231111 ~2006
2683081211536616242310 ~2005
26831006472683100647111 ~2006
2683177943536635588710 ~2005
2683381619536676323910 ~2005
2683539671536707934310 ~2005
2683640699536728139910 ~2005
2683715483536743096710 ~2005
2683724759536744951910 ~2005
2683785431536757086310 ~2005
268382913111272082350312 ~2008
2683937099536787419910 ~2005
2683961363536792272710 ~2005
26839614735904715240711 ~2007
2683961543536792308710 ~2005
26840805771610448346311 ~2006
2684093759536818751910 ~2005
2684513099536902619910 ~2005
2684546171536909234310 ~2005
2684586011536917202310 ~2005
2684618039536923607910 ~2005
2685125939537025187910 ~2005
Exponent Prime Factor Digits Year
2685233651537046730310 ~2005
26852654414296424705711 ~2007
2685275591537055118310 ~2005
2685339719537067943910 ~2005
26853436972148274957711 ~2006
26856265971611375958311 ~2006
2685655883537131176710 ~2005
2685686963537137392710 ~2005
2685940343537188068710 ~2005
2686096499537219299910 ~2005
2686422911537284582310 ~2005
26864513112686451311111 ~2006
26864995331611899719911 ~2006
26865453912686545391111 ~2006
2686582331537316466310 ~2005
26867398133761435738311 ~2007
2686744163537348832710 ~2005
2686825643537365128710 ~2005
2686879451537375890310 ~2005
2686984463537396892710 ~2005
26870743611612244616711 ~2006
2687084171537416834310 ~2005
2687090723537418144710 ~2005
26870941971612256518311 ~2006
2687102843537420568710 ~2005
Exponent Prime Factor Digits Year
268743103930099227636912 ~2009
2687503823537500764710 ~2005
2687551103537510220710 ~2005
2687794859537558971910 ~2005
2687796911537559382310 ~2005
2687872283537574456710 ~2005
26879094011612745640711 ~2006
26879242971612754578311 ~2006
2687942651537588530310 ~2005
2688099371537619874310 ~2005
2688135479537627095910 ~2005
2688229751537645950310 ~2005
26884469272150757541711 ~2006
26884843872688484387111 ~2006
2688555923537711184710 ~2005
2688603299537720659910 ~2005
2688654263537730852710 ~2005
2688788579537757715910 ~2005
2688897311537779462310 ~2005
2688957959537791591910 ~2005
2689103603537820720710 ~2005
2689203059537840611910 ~2005
26892041573764885819911 ~2007
2689251791537850358310 ~2005
26892598211613555892711 ~2006
Exponent Prime Factor Digits Year
26892874814302859969711 ~2007
2689448159537889631910 ~2005
2689560179537912035910 ~2005
2689690631537938126310 ~2005
26897536811613852208711 ~2006
2689901339537980267910 ~2005
26899278536455826847311 ~2007
26901344832690134483111 ~2006
2690358719538071743910 ~2005
26904352571614261154311 ~2006
26904849771614290986311 ~2006
2690554739538110947910 ~2005
2690556779538111355910 ~2005
26906891512152551320911 ~2006
2690713919538142783910 ~2005
2690742563538148512710 ~2005
2690745803538149160710 ~2005
26908463512152677080911 ~2006
26909765714843757827911 ~2007
2690978123538195624710 ~2005
2690994983538198996710 ~2005
2691112199538222439910 ~2005
2691144119538228823910 ~2005
2691165839538233167910 ~2005
2691318551538263710310 ~2005
Home
4.724.182 digits
e-mail
25-04-13