Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2691322919538264583910 ~2005
26915970171614958210311 ~2006
2691608483538321696710 ~2005
2691664403538332880710 ~2005
269197884110767915364112 ~2008
26919991312153599304911 ~2006
2692037291538407458310 ~2005
2692105103538421020710 ~2005
26924673892153973911311 ~2006
26924705411615482324711 ~2006
26926345131615580707911 ~2006
26927161972154172957711 ~2006
2692751879538550375910 ~2005
2692799171538559834310 ~2005
2692948343538589668710 ~2005
2693117099538623419910 ~2005
2693218751538643750310 ~2005
2693273039538654607910 ~2005
2693332679538666535910 ~2005
26934145698080243707111 ~2008
2693516219538703243910 ~2005
2693703059538740611910 ~2005
2693796779538759355910 ~2005
2693856239538771247910 ~2005
2693909219538781843910 ~2005
Exponent Prime Factor Digits Year
26939687931616381275911 ~2006
2694053423538810684710 ~2005
2694063191538812638310 ~2005
2694152039538830407910 ~2005
26942242194849603594311 ~2007
2694256751538851350310 ~2005
2694297863538859572710 ~2005
26944665912694466591111 ~2006
2694579311538915862310 ~2005
2694592091538918418310 ~2005
2694639611538927922310 ~2005
2694761159538952231910 ~2005
2695066823539013364710 ~2005
269510232145277718992912 ~2009
2695296491539059298310 ~2005
2695467479539093495910 ~2005
26955967493773835448711 ~2007
26956073531617364411911 ~2006
2695702211539140442310 ~2005
2695719959539143991910 ~2005
2695956071539191214310 ~2005
2695970339539194067910 ~2005
2695971923539194384710 ~2005
2696262599539252519910 ~2005
2696348003539269600710 ~2005
Exponent Prime Factor Digits Year
2696415539539283107910 ~2005
2696520083539304016710 ~2005
2696565731539313146310 ~2005
2696615843539323168710 ~2005
26968368892157469511311 ~2006
26969330512157546440911 ~2006
2696944643539388928710 ~2005
26969973015933394062311 ~2007
26970401171618224070311 ~2006
26972303571618338214311 ~2006
2697259583539451916710 ~2005
26973607512697360751111 ~2006
2697370583539474116710 ~2005
2697390431539478086310 ~2005
26974345992697434599111 ~2006
26974499331618469959911 ~2006
2697475883539495176710 ~2005
2697544211539508842310 ~2005
2697677771539535554310 ~2005
26978219114316515057711 ~2007
26980018192158401455311 ~2006
2698030763539606152710 ~2005
26981175292158494023311 ~2006
2698232651539646530310 ~2005
2698473779539694755910 ~2005
Exponent Prime Factor Digits Year
2698506059539701211910 ~2005
26985121972158809757711 ~2006
2698784219539756843910 ~2005
2698886423539777284710 ~2005
26989376211619362572711 ~2006
2698993919539798783910 ~2005
2699006543539801308710 ~2005
2699122103539824420710 ~2005
2699139731539827946310 ~2005
26992298992159383919311 ~2006
2699284391539856878310 ~2005
26993291331619597479911 ~2006
2699533979539906795910 ~2005
2699580431539916086310 ~2005
26996313531619778811911 ~2006
2699715839539943167910 ~2005
2699756099539951219910 ~2005
2699912471539982494310 ~2005
2699920319539984063910 ~2005
2699929559539985911910 ~2005
27000165412160013232911 ~2006
2700127571540025514310 ~2005
2700155651540031130310 ~2005
27001765931620105955911 ~2006
2700179519540035903910 ~2005
Home
4.724.182 digits
e-mail
25-04-13