Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2914357679582871535910 ~2005
29144172172331533773711 ~2006
2914513799582902759910 ~2005
2914615079582923015910 ~2005
2914783211582956642310 ~2005
2914887119582977423910 ~2005
2915096759583019351910 ~2005
29151846074664295371311 ~2007
29152691212332215296911 ~2006
29152731971749163918311 ~2006
2915290739583058147910 ~2005
29153574411749214464711 ~2006
2915462051583092410310 ~2005
2915506019583101203910 ~2005
2915539859583107971910 ~2005
2915671679583134335910 ~2005
29157205012332576400911 ~2006
29157207296997729749711 ~2008
2915746331583149266310 ~2005
29158387011749503220711 ~2006
2915896811583179362310 ~2005
2915914139583182827910 ~2005
2915932703583186540710 ~2005
29161207317581913900711 ~2008
29161546492332923719311 ~2006
Exponent Prime Factor Digits Year
2916317483583263496710 ~2005
29163539174666166267311 ~2007
29164054611749843276711 ~2006
2916483539583296707910 ~2005
2916867839583373567910 ~2005
29168739411750124364711 ~2006
2916883751583376750310 ~2005
29169224395250460390311 ~2007
2917118411583423682310 ~2005
2917157783583431556710 ~2005
2917158983583431796710 ~2005
2917352183583470436710 ~2005
2917380143583476028710 ~2005
2917431623583486324710 ~2005
291744169914003720155312 ~2008
2917938323583587664710 ~2005
2917975451583595090310 ~2005
2918012411583602482310 ~2005
29181087731750865263911 ~2006
291821411914007427771312 ~2008
29182714011750962840711 ~2006
29184528412334762272911 ~2006
29184638872334771109711 ~2006
2918547143583709428710 ~2005
29185784937004588383311 ~2008
Exponent Prime Factor Digits Year
2918588411583717682310 ~2005
2918613851583722770310 ~2005
2918709203583741840710 ~2005
29187524771751251486311 ~2006
2918761091583752218310 ~2005
2918835599583767119910 ~2005
2918883419583776683910 ~2005
2918976419583795283910 ~2005
2919022679583804535910 ~2005
29192133971751528038311 ~2006
2919300563583860112710 ~2005
2919301919583860383910 ~2005
2919512819583902563910 ~2005
29195299131751717947911 ~2006
2919540839583908167910 ~2005
29196478731751788723911 ~2006
2919802559583960511910 ~2005
291980335135037640212112 ~2009
2919822611583964522310 ~2005
29198236011751894160711 ~2006
29198435811751906148711 ~2006
29199020174671843227311 ~2007
2919934463583986892710 ~2005
2919973319583994663910 ~2005
2920308659584061731910 ~2005
Exponent Prime Factor Digits Year
2920375043584075008710 ~2005
29203788292336303063311 ~2006
29205350411752321024711 ~2006
29205478731752328723911 ~2006
292058207329789937144712 ~2009
2920621163584124232710 ~2005
29206255072336500405711 ~2006
2920644011584128802310 ~2005
29206932011752415920711 ~2006
2920858679584171735910 ~2005
29208787571752527254311 ~2006
292092414716941360052712 ~2009
29209508411752570504711 ~2006
2920979651584195930310 ~2005
2920989143584197828710 ~2005
29211422211752685332711 ~2006
2921149691584229938310 ~2005
2921181551584236310310 ~2005
29213865112337109208911 ~2006
2921471243584294248710 ~2005
2921493059584298611910 ~2005
2921545103584309020710 ~2005
29217398531753043911911 ~2006
29217789018765336703111 ~2008
29218597571753115854311 ~2006
Home
4.724.182 digits
e-mail
25-04-13