Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
29061638571743698314311 ~2006
2906192651581238530310 ~2005
2906219111581243822310 ~2005
2906290979581258195910 ~2005
29063970171743838210311 ~2006
2906409503581281900710 ~2005
2906424011581284802310 ~2005
2906522819581304563910 ~2005
2906611139581322227910 ~2005
2906710811581342162310 ~2005
29067786912906778691111 ~2007
2906831579581366315910 ~2005
2906978219581395643910 ~2005
2906992811581398562310 ~2005
29070589498721176847111 ~2008
290712153713954183377712 ~2008
2907230531581446106310 ~2005
2907251423581450284710 ~2005
29073306592325864527311 ~2006
2907446351581489270310 ~2005
2907678671581535734310 ~2005
2907816371581563274310 ~2005
2907827843581565568710 ~2005
29079769192326381535311 ~2006
29079934192326394735311 ~2006
Exponent Prime Factor Digits Year
2908166003581633200710 ~2005
2908184231581636846310 ~2005
2908350383581670076710 ~2005
2908603583581720716710 ~2005
29088213432908821343111 ~2007
29088885112327110808911 ~2006
2908891151581778230310 ~2005
2908906463581781292710 ~2005
29089233075236061952711 ~2007
29090255211745415312711 ~2006
2909170403581834080710 ~2005
29092607272327408581711 ~2006
29093335279891733991911 ~2008
2909353571581870714310 ~2005
29093655531745619331911 ~2006
2909375939581875187910 ~2005
2909432231581886446310 ~2005
2909682683581936536710 ~2005
29096901174073566163911 ~2007
2909746439581949287910 ~2005
2910083531582016706310 ~2005
2910105059582021011910 ~2005
2910131291582026258310 ~2005
2910141791582028358310 ~2005
2910191723582038344710 ~2005
Exponent Prime Factor Digits Year
2910216191582043238310 ~2005
2910271139582054227910 ~2005
2910517871582103574310 ~2005
2910581603582116320710 ~2005
29106147472328491797711 ~2006
2910668951582133790310 ~2005
29107055571746423334311 ~2006
2910802343582160468710 ~2005
2910987263582197452710 ~2005
29110601331746636079911 ~2006
2911229963582245992710 ~2005
29112404211746744252711 ~2006
291128701348327364415912 ~2010
2911612019582322403910 ~2005
29116855072329348405711 ~2006
2911854551582370910310 ~2005
29121356234659416996911 ~2007
2912206919582441383910 ~2005
29123407632912340763111 ~2007
2912400839582480167910 ~2005
2912428511582485702310 ~2005
2912482043582496408710 ~2005
29125105818737531743111 ~2008
2912627279582525455910 ~2005
29126893639903143834311 ~2008
Exponent Prime Factor Digits Year
29126896731747613803911 ~2006
2912693183582538636710 ~2005
29128086171747685170311 ~2006
2912946551582589310310 ~2005
2913122171582624434310 ~2005
2913135371582627074310 ~2005
2913168539582633707910 ~2005
2913174263582634852710 ~2005
2913229271582645854310 ~2005
2913251963582650392710 ~2005
2913363443582672688710 ~2005
2913403631582680726310 ~2005
2913466883582693376710 ~2005
2913533411582706682310 ~2005
2913585299582717059910 ~2005
2913758411582751682310 ~2005
29138645171748318710311 ~2006
2913908339582781667910 ~2005
2913966563582793312710 ~2005
29140375131748422507911 ~2006
2914063703582812740710 ~2005
2914120103582824020710 ~2005
2914176131582835226310 ~2005
29142958371748577502311 ~2006
29143274331748596459911 ~2006
Home
4.724.182 digits
e-mail
25-04-13