Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2996490083599298016710 ~2005
29965472234794475556911 ~2007
2996606183599321236710 ~2005
2996762651599352530310 ~2005
29968253832996825383111 ~2007
2996826743599365348710 ~2005
2996869079599373815910 ~2005
2996871659599374331910 ~2005
29968938971798136338311 ~2006
2996990663599398132710 ~2005
29971105134195954718311 ~2007
2997111431599422286310 ~2005
29971483512997148351111 ~2007
2997204971599440994310 ~2005
29972596792397807743311 ~2006
2997270911599454182310 ~2005
29975270211798516212711 ~2006
2997582023599516404710 ~2005
2997589559599517911910 ~2005
2997643079599528615910 ~2005
29976669432997666943111 ~2007
2997985799599597159910 ~2005
2998029011599605802310 ~2005
29980330131798819807911 ~2006
2998073531599614706310 ~2005
Exponent Prime Factor Digits Year
2998377719599675543910 ~2005
2998434599599686919910 ~2005
2998687883599737576710 ~2005
2998709123599741824710 ~2005
2998795463599759092710 ~2005
29988134592998813459111 ~2007
2998817903599763580710 ~2005
2998845131599769026310 ~2005
2998850663599770132710 ~2005
2999018903599803780710 ~2005
2999322251599864450310 ~2005
299937880319196024339312 ~2009
2999458271599891654310 ~2005
2999707643599941528710 ~2005
2999863199599972639910 ~2005
29998942912399915432911 ~2006
29999866731799992003911 ~2006
3000208283600041656710 ~2005
3000217403600043480710 ~2005
30002650637200636151311 ~2008
30003969616600873314311 ~2008
30004612274800737963311 ~2007
3000599183600119836710 ~2005
3000612311600122462310 ~2005
30006195297201486869711 ~2008
Exponent Prime Factor Digits Year
3000626339600125267910 ~2005
300099402114404771300912 ~2008
3001046039600209207910 ~2005
3001067351600213470310 ~2005
3001098059600219611910 ~2005
3001161659600232331910 ~2005
30014389971800863398311 ~2006
30014629072401170325711 ~2006
3001510439600302087910 ~2005
30015225611800913536711 ~2006
30015751214802520193711 ~2007
3001583831600316766310 ~2005
30015979611800958776711 ~2006
30016706699005012007111 ~2008
3001908863600381772710 ~2005
30020506972401640557711 ~2006
3002062319600412463910 ~2005
300215137912008605516112 ~2008
30023096571801385794311 ~2006
30023269971801396198311 ~2006
3002421839600484367910 ~2005
30024512419007353723111 ~2008
3002747831600549566310 ~2005
3002796323600559264710 ~2005
30028392611801703556711 ~2006
Exponent Prime Factor Digits Year
3002876843600575368710 ~2005
30030050771801803046311 ~2006
3003019319600603863910 ~2005
3003246899600649379910 ~2005
3003288311600657662310 ~2005
30033021531801981291911 ~2006
30033077114805292337711 ~2007
3003553583600710716710 ~2005
30035909512402872760911 ~2006
3003597959600719591910 ~2005
3003788171600757634310 ~2005
3003828143600765628710 ~2005
30039072112403125768911 ~2006
3004056299600811259910 ~2005
30041419571802485174311 ~2006
3004202111600840422310 ~2005
3004430171600886034310 ~2005
30045491872403639349711 ~2006
3004651151600930230310 ~2005
3004718963600943792710 ~2005
3004752851600950570310 ~2005
30047610411802856624711 ~2006
30047684694206675856711 ~2007
30047821974206695075911 ~2007
3004837571600967514310 ~2005
Home
4.724.182 digits
e-mail
25-04-13