Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3004896311600979262310 ~2005
3004896623600979324710 ~2005
3004950779600990155910 ~2005
3005068103601013620710 ~2005
3005191811601038362310 ~2005
30052405971803144358311 ~2006
3005280203601056040710 ~2005
30052829572404226365711 ~2006
3005288519601057703910 ~2005
3005365691601073138310 ~2005
30055502715409990487911 ~2007
3005559611601111922310 ~2005
3005678519601135703910 ~2005
3005689919601137983910 ~2005
30057030112404562408911 ~2006
3005708243601141648710 ~2005
30057508574809201371311 ~2007
3005777279601155455910 ~2005
30057846892404627751311 ~2006
30058057972404644637711 ~2006
3005852483601170496710 ~2005
30058908731803534523911 ~2006
3005912243601182448710 ~2005
30059451771803567106311 ~2006
30059600934208344130311 ~2007
Exponent Prime Factor Digits Year
3006057779601211555910 ~2005
3006125183601225036710 ~2005
3006344219601268843910 ~2005
3006354359601270871910 ~2005
3006582191601316438310 ~2005
3006649403601329880710 ~2005
30066650931803999055911 ~2006
30067256536614796436711 ~2008
3006775283601355056710 ~2005
3006805751601361150310 ~2005
3006923519601384703910 ~2005
30069470714811115313711 ~2007
30070134611804208076711 ~2006
3007039583601407916710 ~2005
3007094063601418812710 ~2005
3007214219601442843910 ~2005
30072581811804354908711 ~2006
3007288103601457620710 ~2005
30073023592405841887311 ~2006
30073607572405888605711 ~2006
3007442591601488518310 ~2005
3007486271601497254310 ~2005
3007514039601502807910 ~2005
30075159371804509562311 ~2006
3007518719601503743910 ~2005
Exponent Prime Factor Digits Year
3007595879601519175910 ~2005
3007647563601529512710 ~2005
3007721543601544308710 ~2005
3007857323601571464710 ~2005
30079545412406363632911 ~2006
3008087051601617410310 ~2005
3008126063601625212710 ~2005
30085920292406873623311 ~2006
3008652323601730464710 ~2005
3008714399601742879910 ~2005
30087463971805247838311 ~2006
3008778323601755664710 ~2005
3008812343601762468710 ~2005
30089455011805367300711 ~2006
30090318977221676552911 ~2008
3009098699601819739910 ~2005
3009153431601830686310 ~2005
3009163823601832764710 ~2005
3009210551601842110310 ~2005
3009225623601845124710 ~2005
3009260063601852012710 ~2005
30092822812407425824911 ~2006
3009298931601859786310 ~2005
3009532079601906415910 ~2005
3009719243601943848710 ~2005
Exponent Prime Factor Digits Year
3009719651601943930310 ~2005
3009741503601948300710 ~2005
30098820592407905647311 ~2006
3009915323601983064710 ~2005
3010111151602022230310 ~2005
30102116819632677379311 ~2008
3010212371602042474310 ~2005
3010370411602074082310 ~2005
3010407479602081495910 ~2005
30106483792408518703311 ~2006
3010942019602188403910 ~2005
3011091179602218235910 ~2005
3011231603602246320710 ~2005
30112332014817973121711 ~2007
30113772531806826351911 ~2006
30113871292409109703311 ~2006
3011406971602281394310 ~2005
3011454263602290852710 ~2005
30117107212409368576911 ~2006
30118344534216568234311 ~2007
30119608211807176492711 ~2006
30120245574216834379911 ~2007
3012060563602412112710 ~2005
30122834331807370059911 ~2006
3012395051602479010310 ~2005
Home
4.724.182 digits
e-mail
25-04-13