Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
255736186910229447476112 ~2008
2557444751511488950310 ~2004
2557470959511494191910 ~2004
25574712432557471243111 ~2006
25575826392557582639111 ~2006
25577171596138521181711 ~2007
2557746491511549298310 ~2004
2557784819511556963910 ~2004
2557793519511558703910 ~2004
2557843979511568795910 ~2004
2557974719511594943910 ~2004
25580167492046413399311 ~2006
25581607331534896439911 ~2006
2558510291511702058310 ~2004
2558627003511725400710 ~2004
2558687783511737556710 ~2004
2558724191511744838310 ~2004
25587628274094020523311 ~2007
2558920439511784087910 ~2004
25589865893582581224711 ~2007
2558999603511799920710 ~2004
2559059999511811999910 ~2004
2559099083511819816710 ~2004
25591500792559150079111 ~2006
25592419076142180576911 ~2007
Exponent Prime Factor Digits Year
2559308399511861679910 ~2004
2559413651511882730310 ~2004
2559497663511899532710 ~2004
2559553739511910747910 ~2004
2559804011511960802310 ~2004
2559822299511964459910 ~2004
2559962231511992446310 ~2004
2559973931511994786310 ~2004
25599856012047988480911 ~2006
2560070651512014130310 ~2004
2560224143512044828710 ~2004
2560240979512048195910 ~2004
25602656411536159384711 ~2006
2560270859512054171910 ~2004
2560294199512058839910 ~2004
2560403519512080703910 ~2004
25604524571536271474311 ~2006
2560563143512112628710 ~2004
2560602899512120579910 ~2004
25606166092048493287311 ~2006
2560652603512130520710 ~2004
2560832003512166400710 ~2004
256093349326121521628712 ~2009
2560939943512187988710 ~2004
2561113283512222656710 ~2004
Exponent Prime Factor Digits Year
25612864011536771840711 ~2006
25613095194610357134311 ~2007
2561371751512274350310 ~2004
25613855514610493991911 ~2007
2561473991512294798310 ~2004
2561490311512298062310 ~2004
2561602919512320583910 ~2004
2561640899512328179910 ~2004
2561752079512350415910 ~2004
2561759339512351867910 ~2004
2561813399512362679910 ~2004
2562106979512421395910 ~2004
256211694132282673456712 ~2009
256214729315885313216712 ~2008
2562270563512454112710 ~2004
2562295523512459104710 ~2004
2562411251512482250310 ~2004
2562770531512554106310 ~2004
2562859163512571832710 ~2004
25629391312050351304911 ~2006
2562942191512588438310 ~2004
2562955019512591003910 ~2004
2562963659512592731910 ~2004
2563008803512601760710 ~2004
2563014059512602811910 ~2004
Exponent Prime Factor Digits Year
2563029179512605835910 ~2004
2563045619512609123910 ~2004
2563074719512614943910 ~2004
2563120271512624054310 ~2004
2563128371512625674310 ~2004
2563139003512627800710 ~2004
2563213463512642692710 ~2004
2563310591512662118310 ~2004
2563325111512665022310 ~2004
2563385543512677108710 ~2004
2563405583512681116710 ~2004
25634239211538054352711 ~2006
2563464203512692840710 ~2004
2563499531512699906310 ~2004
2563543799512708759910 ~2004
2563584203512716840710 ~2004
2563619843512723968710 ~2004
2563680719512736143910 ~2004
2563695371512739074310 ~2004
2563769051512753810310 ~2004
25638324131538299447911 ~2006
2564017679512803535910 ~2004
2564031419512806283910 ~2004
2564141159512828231910 ~2004
256418773732308765486312 ~2009
Home
4.828.532 digits
e-mail
25-06-01