Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2127396059425479211910 ~2004
21274256271701940501711 ~2005
2127561323425512264710 ~2004
2127581843425516368710 ~2004
2127666743425533348710 ~2004
2127700259425540051910 ~2004
21277258571276635514311 ~2005
21277572432127757243111 ~2006
21278042331276682539911 ~2005
21278044311702243544911 ~2005
2127849011425569802310 ~2004
21278809811276728588711 ~2005
2127923123425584624710 ~2004
2127963419425592683910 ~2004
2127974171425594834310 ~2004
21279889873404782379311 ~2006
2128052879425610575910 ~2004
2128059911425611982310 ~2004
2128101623425620324710 ~2004
2128155479425631095910 ~2004
2128287131425657426310 ~2004
2128315151425663030310 ~2004
21284382711702750616911 ~2005
2128618571425723714310 ~2004
2128628291425725658310 ~2004
Exponent Prime Factor Digits Year
2128693559425738711910 ~2004
2128796531425759306310 ~2004
2128833431425766686310 ~2004
21288928791703114303311 ~2005
2128924823425784964710 ~2004
2128945211425789042310 ~2004
21290793531277447611911 ~2005
21290904371277454262311 ~2005
2129184719425836943910 ~2004
21291905092980866712711 ~2006
21293000091703440007311 ~2005
2129341079425868215910 ~2004
2129369771425873954310 ~2004
21293903275536414850311 ~2007
2129489123425897824710 ~2004
2129533643425906728710 ~2004
2129559251425911850310 ~2004
21295748571277744914311 ~2005
21297938571277876314311 ~2005
21299102832129910283111 ~2006
21299488971277969338311 ~2005
2130030443426006088710 ~2004
2130113603426022720710 ~2004
2130190571426038114310 ~2004
213049236713635151148912 ~2008
Exponent Prime Factor Digits Year
2130546791426109358310 ~2004
2130591503426118300710 ~2004
2130629843426125968710 ~2004
2130730163426146032710 ~2004
2130860243426172048710 ~2004
2131072379426214475910 ~2004
2131129211426225842310 ~2004
21312545513836258191911 ~2006
2131298051426259610310 ~2004
21313157411278789444711 ~2005
2131316903426263380710 ~2004
2131320683426264136710 ~2004
21314265711705141256911 ~2005
21316294911705303592911 ~2005
21316568275542307750311 ~2007
2131683791426336758310 ~2004
21317212971279032778311 ~2005
213173733120464678377712 ~2008
2131745723426349144710 ~2004
2131767503426353500710 ~2004
2131807043426361408710 ~2004
2131926059426385211910 ~2004
21319558211279173492711 ~2005
2131984859426396971910 ~2004
2132116631426423326310 ~2004
Exponent Prime Factor Digits Year
21321747531279304851911 ~2005
2132203919426440783910 ~2004
2132271539426454307910 ~2004
2132371511426474302310 ~2004
2132412251426482450310 ~2004
2132467703426493540710 ~2004
2132516339426503267910 ~2004
2132525711426505142310 ~2004
2132549591426509918310 ~2004
21326349471706107957711 ~2005
2132819963426563992710 ~2004
2132822819426564563910 ~2004
21328336931279700215911 ~2005
2132909939426581987910 ~2004
2132944283426588856710 ~2004
213294600126875119612712 ~2008
2132951939426590387910 ~2004
2132971499426594299910 ~2004
2132999399426599879910 ~2004
2133052739426610547910 ~2004
21331757211279905432711 ~2005
21331778571279906714311 ~2005
2133258059426651611910 ~2004
21333048411706643872911 ~2005
21333819675120116720911 ~2007
Home
4.933.056 digits
e-mail
25-07-20