Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2571402503514280500710 ~2004
25714144012057131520911 ~2006
25714743192571474319111 ~2006
25715206611542912396711 ~2006
25715423811542925428711 ~2006
2571590303514318060710 ~2004
2571774239514354847910 ~2004
2571785459514357091910 ~2004
2571927119514385423910 ~2004
25720544211543232652711 ~2006
25720675931543240555911 ~2006
25721269934115403188911 ~2007
2572176011514435202310 ~2004
2572205903514441180710 ~2004
2572207259514441451910 ~2004
2572250099514450019910 ~2004
2572253423514450684710 ~2004
257233054323150974887112 ~2009
25724344612057947568911 ~2006
25726111314630700035911 ~2007
2572668179514533635910 ~2004
2572692779514538555910 ~2004
25728074512058245960911 ~2006
2572829411514565882310 ~2004
2572873871514574774310 ~2004
Exponent Prime Factor Digits Year
25730449731543826983911 ~2006
2573047859514609571910 ~2004
2573111819514622363910 ~2004
2573165219514633043910 ~2004
2573263331514652666310 ~2004
25733231876175975648911 ~2007
25733240211543994412711 ~2006
2573380259514676051910 ~2004
2573454731514690946310 ~2004
2573466491514693298310 ~2004
2573500031514700006310 ~2004
2573538059514707611910 ~2004
2573678351514735670310 ~2004
25738045331544282719911 ~2006
2573816111514763222310 ~2004
25739376072573937607111 ~2006
2574100799514820159910 ~2004
2574136811514827362310 ~2004
2574269699514853939910 ~2004
2574273419514854683910 ~2004
2574402923514880584710 ~2005
2574460211514892042310 ~2005
25745620192059649615311 ~2006
2574627131514925426310 ~2005
2574793031514958606310 ~2005
Exponent Prime Factor Digits Year
2574901883514980376710 ~2005
2574925271514985054310 ~2005
2575040291515008058310 ~2005
25750577297725173187111 ~2007
2575163963515032792710 ~2005
2575224143515044828710 ~2005
2575313759515062751910 ~2005
2575316171515063234310 ~2005
2575355819515071163910 ~2005
2575403819515080763910 ~2005
25754076192575407619111 ~2006
2575471571515094314310 ~2005
2575599959515119991910 ~2005
25756551411545393084711 ~2006
2575702991515140598310 ~2005
2575871939515174387910 ~2005
2575890419515178083910 ~2005
2575903763515180752710 ~2005
25760036093606405052711 ~2007
2576123351515224670310 ~2005
2576200559515240111910 ~2005
2576273123515254624710 ~2005
2576280299515256059910 ~2005
2576296319515259263910 ~2005
2576399543515279908710 ~2005
Exponent Prime Factor Digits Year
25764272212061141776911 ~2006
2576482451515296490310 ~2005
2576585579515317115910 ~2005
25767501734122800276911 ~2007
2576846579515369315910 ~2005
25769382011546162920711 ~2006
2577040019515408003910 ~2005
2577121271515424254310 ~2005
2577211811515442362310 ~2005
2577296399515459279910 ~2005
25773073331546384399911 ~2006
257758597112372412660912 ~2008
2577976283515595256710 ~2005
2578237859515647571910 ~2005
25783511171547010670311 ~2006
2578371443515674288710 ~2005
2578404299515680859910 ~2005
25784406371547064382311 ~2006
2578501259515700251910 ~2005
2578510043515702008710 ~2005
25785667372062853389711 ~2006
2578582631515716526310 ~2005
2578758131515751626310 ~2005
2578816763515763352710 ~2005
2578901999515780399910 ~2005
Home
4.933.056 digits
e-mail
25-07-20