Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
47192713973775417117711 ~2008
47194909493775592759311 ~2008
4719529439943905887910 ~2007
4719620579943924115910 ~2007
4719830231943966046310 ~2007
4719884399943976879910 ~2007
472014294110384314470312 ~2009
47202699434720269943111 ~2008
47203666976608513375911 ~2009
4720415543944083108710 ~2007
4720421591944084318310 ~2007
47209657193776772575311 ~2008
4721045963944209192710 ~2007
4721471003944294200710 ~2007
472207865933998966344912 ~2010
4722189539944437907910 ~2007
47222330234722233023111 ~2008
4722427763944485552710 ~2007
4722486479944497295910 ~2007
4722487559944497511910 ~2007
4722701843944540368710 ~2007
472273392110390014626312 ~2009
4722998099944599619910 ~2007
4723053431944610686310 ~2007
4723128383944625676710 ~2007
Exponent Prime Factor Digits Year
47232551537557208244911 ~2009
4723321019944664203910 ~2007
4723399931944679986310 ~2007
4723502159944700431910 ~2007
4723543463944708692710 ~2007
47236556812834193408711 ~2008
47237745413779019632911 ~2008
4723813271944762654310 ~2007
4723936499944787299910 ~2007
4724146103944829220710 ~2007
4724356823944871364710 ~2007
4724373191944874638310 ~2007
47244483176614227643911 ~2009
4724541551944908310310 ~2007
4724574611944914922310 ~2007
47247291173779783293711 ~2008
47247474413779797952911 ~2008
47247900532834874031911 ~2008
4724863271944972654310 ~2007
47253719273780297541711 ~2008
4725436379945087275910 ~2007
4725596831945119366310 ~2007
4725696659945139331910 ~2007
4725756923945151384710 ~2007
4726236323945247264710 ~2007
Exponent Prime Factor Digits Year
47263292213781063376911 ~2008
47265021077562403371311 ~2009
4726653059945330611910 ~2007
47268238732836094323911 ~2008
4726908071945381614310 ~2007
47269257293781540583311 ~2008
472707140312290385647912 ~2009
47272426514727242651111 ~2008
4727377883945475576710 ~2007
4727554151945510830310 ~2007
472767280911346414741712 ~2009
47277197412836631844711 ~2008
47278423972836705438311 ~2008
472831554110402294190312 ~2009
4728331379945666275910 ~2007
47285513393782841071311 ~2008
4728749939945749987910 ~2007
4728767723945753544710 ~2007
4728828323945765664710 ~2007
47288479517566156721711 ~2009
47290755798512336042311 ~2009
4729283411945856682310 ~2007
47296878132837812687911 ~2008
4729690523945938104710 ~2007
47296939732837816383911 ~2008
Exponent Prime Factor Digits Year
4729725419945945083910 ~2007
4729831979945966395910 ~2007
47298349972837900998311 ~2008
4730133263946026652710 ~2007
47301938417568310145711 ~2009
4730350679946070135910 ~2007
4730650091946130018310 ~2007
4730662043946132408710 ~2007
47309233973784738717711 ~2008
4731036731946207346310 ~2007
4731085223946217044710 ~2007
47311207673784896613711 ~2008
4731265079946253015910 ~2007
473133981711355215560912 ~2009
47317438332839046299911 ~2008
4731878891946375778310 ~2007
4731964103946392820710 ~2007
4732103723946420744710 ~2007
4732427699946485539910 ~2007
4732491383946498276710 ~2007
47326106576625654919911 ~2009
47326299012839577940711 ~2008
4732639259946527851910 ~2007
47330997532839859851911 ~2008
4733795939946759187910 ~2007
Home
4.724.182 digits
e-mail
25-04-13