Home Free Reseller Hosting Program, Anonymous 24x7 Clients Support, Fast 24x7 Reseller Support e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
57744442333464666539911 ~2008
57745895391154917907911 ~2007
577469455124253717114312 ~2010
57750016191155000323911 ~2007
57750181431155003628711 ~2007
57755822694620465815311 ~2009
57759350511155187010311 ~2007
57761222511155224450311 ~2007
57765732174621258573711 ~2009
57768236715776823671111 ~2009
57770821191155416423911 ~2007
57779652831155593056711 ~2007
57780238791155604775911 ~2007
57780878631155617572711 ~2007
57780922791155618455911 ~2007
57784200013467052000711 ~2008
57785449911155708998311 ~2007
57786900591155738011911 ~2007
57788578314623086264911 ~2009
57788985919246237745711 ~2009
57789583013467374980711 ~2008
57789749338090564906311 ~2009
577915756912714146651912 ~2010
57793314711155866294311 ~2007
57793565031155871300711 ~2007
Exponent Prime Factor Dig. Year
577970905964732741460912 ~2012
57797132994623770639311 ~2009
57802642191156052843911 ~2007
57803171779248507483311 ~2009
57807488991156149779911 ~2007
57809648511156192970311 ~2007
57809739591156194791911 ~2007
57810467514624837400911 ~2009
57811250813468675048711 ~2008
57811594213468695652711 ~2008
57812475231156249504711 ~2007
57813545391156270907911 ~2007
57815560311156311206311 ~2007
57820498911156409978311 ~2007
57821328831156426576711 ~2007
57821540511156430810311 ~2007
57822445431156448908711 ~2007
57823977231156479544711 ~2007
57824398995782439899111 ~2009
57825606298095584880711 ~2009
57825755631156515112711 ~2007
57826734594626138767311 ~2009
57827963991156559279911 ~2007
57828172791156563455911 ~2007
57835793631156715872711 ~2007
Exponent Prime Factor Dig. Year
57836364711156727294311 ~2007
57838645911156772918311 ~2007
57839440373470366422311 ~2008
57841251831156825036711 ~2007
57841579978097821195911 ~2009
57841998533470519911911 ~2008
57843458391156869167911 ~2007
578465030369415803636112 ~2012
57848331111156966622311 ~2007
57848504394627880351311 ~2009
57848942391156978847911 ~2007
57850293619256046977711 ~2009
578520573110413370315912 ~2010
57852564315785256431111 ~2009
57854385831157087716711 ~2007
57854551911157091038311 ~2007
57855352191157107043911 ~2007
57855972831157119456711 ~2007
57857188333471431299911 ~2008
57861072533471664351911 ~2008
57861463974628917117711 ~2009
57862127031157242540711 ~2007
57863454591157269091911 ~2007
57865019511157300390311 ~2007
57865370511157307410311 ~2007
Exponent Prime Factor Dig. Year
57866689911157333798311 ~2007
57869123631157382472711 ~2007
57869825991157396519911 ~2007
57872384235787238423111 ~2009
57872476191157449523911 ~2007
57873270894629861671311 ~2009
57874550991157491019911 ~2007
57874930911157498618311 ~2007
57874975333472498519911 ~2008
57875161914630012952911 ~2009
57876039079260166251311 ~2009
57877322391157546447911 ~2007
57880194591157603891911 ~2007
57880629711157612594311 ~2007
57884965133473097907911 ~2008
57885171231157703424711 ~2007
578855809156727869291912 ~2011
57886576613473194596711 ~2008
57886782231157735644711 ~2007
57886947613473216856711 ~2008
57890270391157805407911 ~2007
57890499613473429976711 ~2008
57891178133473470687911 ~2008
578966982710421405688712 ~2010
57897294894631783591311 ~2009
Home
4.754.097 digits
e-mail
25-04-28