Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
60528046791210560935911 ~2007
60529128413631747704711 ~2009
60535522431210710448711 ~2007
60536703831210734076711 ~2007
60543767031210875340711 ~2007
60546872631210937452711 ~2007
605482279115742539256712 ~2010
60548429991210968599911 ~2007
60549379191210987583911 ~2007
60551126991211022539911 ~2007
60555571911211111438311 ~2007
60559099431211181988711 ~2007
60559743831211194876711 ~2007
60560293791211205875911 ~2007
60561729711211234594311 ~2007
60562351311211247026311 ~2007
60563697231211273944711 ~2007
60564277191211285543911 ~2007
60565892631211317852711 ~2007
60567326511211346530311 ~2007
60570952791211419055911 ~2007
60571445031211428900711 ~2007
60571675791211433515911 ~2007
60572134191211442683911 ~2007
605726504325440513180712 ~2011
Exponent Prime Factor Dig. Year
60574574631211491492711 ~2007
60575240511211504810311 ~2007
60581388413634883304711 ~2009
60584616111211692322311 ~2007
60586233591211724671911 ~2007
60588241813635294508711 ~2009
60591626631211832532711 ~2007
60591876111211837522311 ~2007
60593250591211865011911 ~2007
60595389831211907796711 ~2007
60596991373635819482311 ~2009
60598524831211970496711 ~2007
60600731391212014627911 ~2007
60602342631212046852711 ~2007
60604921311212098426311 ~2007
60605237511212104750311 ~2007
60607157991212143159911 ~2007
60607575231212151504711 ~2007
60607583214848606656911 ~2009
60609301311212186026311 ~2007
60613891431212277828711 ~2007
60613981311212279626311 ~2007
60619942191212398843911 ~2007
606200479910911608638312 ~2010
60621296631212425932711 ~2007
Exponent Prime Factor Dig. Year
60622211573637332694311 ~2009
60624597831212491956711 ~2007
60626686911212533738311 ~2007
60626784436062678443111 ~2009
60626990116062699011111 ~2009
606301410129102467684912 ~2011
60636671391212733427911 ~2007
60638802111212776042311 ~2007
60639434213638366052711 ~2009
60639973191212799463911 ~2007
60642296836064229683111 ~2009
60643308591212866171911 ~2007
60647364231212947284711 ~2007
60648347991212966959911 ~2007
60650099391213001987911 ~2007
60650485191213009703911 ~2007
60653612991213072259911 ~2007
60654230596065423059111 ~2009
60656776614852542128911 ~2009
60660440511213208810311 ~2007
60660584511213211690311 ~2007
60663891111213277822311 ~2007
60663924711213278494311 ~2007
60664009191213280183911 ~2007
60664230019706276801711 ~2010
Exponent Prime Factor Dig. Year
60665240631213304812711 ~2007
60665853196066585319111 ~2009
60666523791213330475911 ~2007
60669469133640168147911 ~2009
606709378714561025088912 ~2010
60672046791213440935911 ~2007
60673342191213466843911 ~2007
60677670711213553414311 ~2007
60679265031213585300711 ~2007
60679995231213599904711 ~2007
60681272391213625447911 ~2007
60682685533640961131911 ~2009
60684501831213690036711 ~2007
60684751074854780085711 ~2009
60689946231213798924711 ~2007
60692308311213846166311 ~2007
606939442133988608757712 ~2011
60696276174855702093711 ~2009
60696994791213939895911 ~2007
60698956911213979138311 ~2007
60699186231213983724711 ~2007
60702619431214052388711 ~2007
60705382911214107658311 ~2007
60705861111214117222311 ~2007
60706073511214121470311 ~2007
Home
4.828.532 digits
e-mail
25-06-01