Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
86506006911730120138311 ~2009
865061086127681954755312 ~2012
865084397969206751832112 ~2013
86511172911730223458311 ~2009
86516687031730333740711 ~2009
86518168791730363375911 ~2009
86520087591730401751911 ~2009
86522438511730448770311 ~2009
86538640311730772806311 ~2009
86544987296923598983311 ~2010
86545183911730903678311 ~2009
865463656313847418500912 ~2011
86547682311730953646311 ~2009
86550900231731018004711 ~2009
86552401038655240103111 ~2010
86552652111731053042311 ~2009
86552900935193174055911 ~2010
86557098231731141964711 ~2009
86557896711731157934311 ~2009
86559285591731185711911 ~2009
86561957991731239159911 ~2009
86563939791731278795911 ~2009
865679386934627175476112 ~2012
86570718078657071807111 ~2010
86574201711731484034311 ~2009
Exponent Prime Factor Dig. Year
86577959775194677586311 ~2010
865865228348488452784912 ~2012
86591803911731836078311 ~2009
86595978831731919576711 ~2009
86596029111731920582311 ~2009
86598927111731978542311 ~2009
86599135791731982715911 ~2009
86600409231732008184711 ~2009
86605051311732101026311 ~2009
86605559031732111180711 ~2009
86606555991732131119911 ~2009
86608529516928682360911 ~2010
86608840791732176815911 ~2009
86610519615196631176711 ~2010
866187218912126621064712 ~2011
86619219775197153186311 ~2010
86619858596929588687311 ~2010
86624312935197458775911 ~2010
86627003031732540060711 ~2009
866340149936386286295912 ~2012
86642994296931439543311 ~2010
86647739631732954792711 ~2009
86647875975198872558311 ~2010
866597715720798345176912 ~2011
86665763391733315267911 ~2009
Exponent Prime Factor Dig. Year
86669597991733391959911 ~2009
86679029175200741750311 ~2010
86680015911733600318311 ~2009
86680933191733618663911 ~2009
86681626316934530104911 ~2010
86686536831733730736711 ~2009
86692654311733853086311 ~2009
86698501311733970026311 ~2009
86702962311734059246311 ~2009
867059889713872958235312 ~2011
86706436431734128728711 ~2009
86706905718670690571111 ~2010
86707270311734145406311 ~2009
86708328231734166564711 ~2009
86709336711734186734311 ~2009
86715387735202923263911 ~2010
867158814729483399699912 ~2012
86723887496937910999311 ~2010
86728965438672896543111 ~2010
86729863791734597275911 ~2009
86731824711734636494311 ~2009
86736902991734738059911 ~2009
86737436511734748730311 ~2009
867379747127756151907312 ~2012
86744867631734897352711 ~2009
Exponent Prime Factor Dig. Year
86749922391734998447911 ~2009
86757669591735153391911 ~2009
86759189575205551374311 ~2010
86764566711735291334311 ~2009
86764763815205885828711 ~2010
86766317391735326347911 ~2009
86766454376941316349711 ~2010
86767907991735358159911 ~2009
86777925231735558504711 ~2009
86778976911735579538311 ~2009
86779555135206773307911 ~2010
867836466126035093983112 ~2012
86785861311735717226311 ~2009
86791798191735835963911 ~2009
86793486176943478893711 ~2010
86800682838680068283111 ~2010
86805478911736109578311 ~2009
86813017935208781075911 ~2010
86819209015209152540711 ~2010
86819563311736391266311 ~2009
86819806791736396135911 ~2009
86820165591736403311911 ~2009
86820226311736404526311 ~2009
86823638575209418314311 ~2010
86827116591736542331911 ~2009
Home
4.724.182 digits
e-mail
25-04-13