Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
62977580031259551600711 ~2008
629779713710076475419312 ~2010
62981554911259631098311 ~2008
62983779013779026740711 ~2009
62984387533779063251911 ~2009
629844301345348789693712 ~2011
62985002031259700040711 ~2008
62992453431259849068711 ~2008
62994871791259897435911 ~2008
62995542591259910851911 ~2008
629962016915119088405712 ~2010
62998306431259966128711 ~2008
63000036831260000736711 ~2008
63002474631260049492711 ~2008
63002800396300280039111 ~2009
63004935175040394813711 ~2009
630055956175606714732112 ~2012
630058938113861296638312 ~2010
63006909733780414583911 ~2009
63009328733780559723911 ~2009
63009661311260193226311 ~2008
63012447231260248944711 ~2008
63012568911260251378311 ~2008
63015533991260310679911 ~2008
63017226591260344531911 ~2008
Exponent Prime Factor Dig. Year
63018042591260360851911 ~2008
63019652511260393050311 ~2008
63020651573781239094311 ~2009
63022307031260446140711 ~2008
63023429511260468590311 ~2008
63028970991260579419911 ~2008
63029658711260593174311 ~2008
63033279111260665582311 ~2008
63033766975042701357711 ~2009
63033856373782031382311 ~2009
63035490715042839256911 ~2009
63038298013782297880711 ~2009
630416638315129999319312 ~2010
63043491898826088864711 ~2010
63043916511260878330311 ~2008
63046737831260934756711 ~2008
63049917831260998356711 ~2008
630588244974409412898312 ~2012
63062610111261252202311 ~2008
630648147710090370363312 ~2010
63066130213783967812711 ~2009
63066149716306614971111 ~2009
63071378413784282704711 ~2009
63074435631261488712711 ~2008
63074668431261493368711 ~2008
Exponent Prime Factor Dig. Year
63075988791261519775911 ~2008
63076063791261521275911 ~2008
63077541773784652506311 ~2009
63079165911261583318311 ~2008
63083835175046706813711 ~2009
63084961911261699238311 ~2008
63089766231261795324711 ~2008
63097036191261940723911 ~2008
63100302711262006054311 ~2008
63100582813786034968711 ~2009
63102182511262043650311 ~2008
63102491031262049820711 ~2008
63104893311262097866311 ~2008
63107102511262142050311 ~2008
631136264939130448423912 ~2011
63114015711262280314311 ~2008
63114118191262282363911 ~2008
63116472711262329454311 ~2008
63116761791262335235911 ~2008
63117742911262354858311 ~2008
63118268631262365372711 ~2008
63118446538836582514311 ~2010
63120307791262406155911 ~2008
63124754476312475447111 ~2009
63126018711262520374311 ~2008
Exponent Prime Factor Dig. Year
63127183431262543668711 ~2008
631277067126513636818312 ~2011
63130042311262600846311 ~2008
63131701311262634026311 ~2008
63131755378838445751911 ~2010
63132405595050592447311 ~2009
63135262813788115768711 ~2009
63136734133788204047911 ~2009
63139070031262781400711 ~2008
63139163631262783272711 ~2008
63142836373788570182311 ~2009
63143870631262877412711 ~2008
63145678791262913575911 ~2008
63146567095051725367311 ~2009
63156403191263128063911 ~2008
631568866315157652791312 ~2010
63157379991263147599911 ~2008
63159809391263196187911 ~2008
63162611773789756706311 ~2009
63164693031263293860711 ~2008
63166215231263324304711 ~2008
63169402431263388048711 ~2008
63175205511263504110311 ~2008
63179561031263591220711 ~2008
63180423591263608471911 ~2008
Home
4.828.532 digits
e-mail
25-06-01