Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
54694573614375565888911 ~2009
54695352231093907044711 ~2007
54696760213281805612711 ~2008
54698890791093977815911 ~2007
54701828631094036572711 ~2007
54702643613282158616711 ~2008
547054306313129303351312 ~2010
54708843831094176876711 ~2007
54713614794377089183311 ~2009
54714172191094283443911 ~2007
54715867791094317355911 ~2007
54716548791094330975911 ~2007
54717241791094344835911 ~2007
54726359511094527190311 ~2007
547266742730646937591312 ~2011
54729815511094596310311 ~2007
54731477631094629552711 ~2007
54731502733283890163911 ~2008
54732616791094652335911 ~2007
547361634713136679232912 ~2010
54739236774379138941711 ~2009
54742062173284523730311 ~2008
54742068413284524104711 ~2008
54742874991094857499911 ~2007
54744190573284651434311 ~2008
Exponent Prime Factor Dig. Year
54744214791094884295911 ~2007
54745329613284719776711 ~2008
54746599791094931995911 ~2007
54748280631094965612711 ~2007
54750756591095015131911 ~2007
54750967974380077437711 ~2009
54751749831095034996711 ~2007
54752327391095046547911 ~2007
54753405373285204322311 ~2008
54753738177665523343911 ~2009
54755971191095119423911 ~2007
54758583591095171671911 ~2007
54761290791095225815911 ~2007
547618752731761887656712 ~2011
54764657511095293150311 ~2007
54765696773285941806311 ~2008
54767886591095357731911 ~2007
54767943591095358871911 ~2007
54771502914381720232911 ~2009
54771623631095432472711 ~2007
54773165631095463312711 ~2007
54773680333286420819911 ~2008
54775986711095519734311 ~2007
54776949831095538996711 ~2007
54777724074382217925711 ~2009
Exponent Prime Factor Dig. Year
54779686519860343571911 ~2009
54781346391095626927911 ~2007
54782729573286963774311 ~2008
54789830631095796612711 ~2007
54791167431095823348711 ~2007
54792536514383402920911 ~2009
54792746773287564806311 ~2008
54794235711095884714311 ~2007
54794667111095893342311 ~2007
54795879831095917596711 ~2007
54796839533287810371911 ~2008
54797616591095952331911 ~2007
54798087831095961756711 ~2007
54798427791095968555911 ~2007
54799343631095986872711 ~2007
54799423791095988475911 ~2007
54801969711096039394311 ~2007
548042525927402126295112 ~2010
54805329795480532979111 ~2009
54808284114384662728911 ~2009
54810638391096212767911 ~2007
54816686573289001194311 ~2008
54817606933289056415911 ~2008
54821220831096424416711 ~2007
54824003511096480070311 ~2007
Exponent Prime Factor Dig. Year
54825909774386072781711 ~2009
54826890111096537802311 ~2007
54831428031096628560711 ~2007
54832636191096652723911 ~2007
54835340991096706819911 ~2007
54836209311096724186311 ~2007
54837277074386982165711 ~2009
54841811773290508706311 ~2008
54842341791096846835911 ~2007
54842578373290554702311 ~2008
54842918991096858379911 ~2007
54845463111096909262311 ~2007
54851701431097034028711 ~2007
54853679595485367959111 ~2009
54854181195485418119111 ~2009
54855037911097100758311 ~2007
54855876231097117524711 ~2007
54857311431097146228711 ~2007
54858251173291495070311 ~2008
54861442431097228848711 ~2007
54862025631097240512711 ~2007
54863632791097272655911 ~2007
54864997791097299955911 ~2007
54865050711097301014311 ~2007
54866549631097330992711 ~2007
Home
4.828.532 digits
e-mail
25-06-01