Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
80647886031612957720711 ~2008
80649004911612980098311 ~2008
806512531158068902239312 ~2012
806513150919356315621712 ~2011
80659457574839567454311 ~2010
80660803911613216078311 ~2008
80661087831613221756711 ~2008
806634889133878665342312 ~2012
80664780831613295616711 ~2008
80665761591613315231911 ~2008
80667148911613342978311 ~2008
80678319831613566396711 ~2008
80681986431613639728711 ~2008
80685148431613702968711 ~2008
80687280231613745604711 ~2008
80702569191614051383911 ~2008
80705081511614101630311 ~2008
80705090391614101807911 ~2008
80705121111614102422311 ~2008
807075198714527353576712 ~2011
80707796214842467772711 ~2010
80708967591614179351911 ~2008
807095590124212867703112 ~2011
80710965974842657958311 ~2010
80712653934842759235911 ~2010
Exponent Prime Factor Dig. Year
80713868816457109504911 ~2010
80725077111614501542311 ~2008
80726237631614524752711 ~2008
80729565111614591302311 ~2008
80732680974843960858311 ~2010
80733119478073311947111 ~2010
807374228320991729935912 ~2011
80738984631614779692711 ~2008
807548887312920782196912 ~2011
80756000631615120012711 ~2008
80758036791615160735911 ~2008
80761474791615229495911 ~2008
80765666391615313327911 ~2008
80768550711615371014311 ~2008
80770696334846241779911 ~2010
80773122831615462456711 ~2008
807785409114540137363912 ~2011
80781498831615629976711 ~2008
80782271814846936308711 ~2010
80789206911615784138311 ~2008
80792758431615855168711 ~2008
80809027791616180555911 ~2008
80812349631616246992711 ~2008
80816170911616323418311 ~2008
80817269031616345380711 ~2008
Exponent Prime Factor Dig. Year
80824315311616486306311 ~2008
80825024511616500490311 ~2008
80830726016466458080911 ~2010
80831272191616625443911 ~2008
80833250391616665007911 ~2008
80836620111616732402311 ~2008
80837910974850274658311 ~2010
80839861796467188943311 ~2010
80841073791616821475911 ~2008
80841310431616826208711 ~2008
80842313391616846267911 ~2008
80853921231617078424711 ~2008
80854353591617087071911 ~2008
80859140031617182800711 ~2008
80861836911617236738311 ~2008
80862065391617241307911 ~2008
80863921311617278426311 ~2008
80867563734852053823911 ~2010
80867777031617355540711 ~2008
80868522711617370454311 ~2008
80873101976469848157711 ~2010
80874549831617490996711 ~2008
80875549334852532959911 ~2010
808785020911322990292712 ~2010
80879841711617596834311 ~2008
Exponent Prime Factor Dig. Year
80884663616470773088911 ~2010
80887962174853277730311 ~2010
80889208311617784166311 ~2008
80894074016471525920911 ~2010
80899865216471989216911 ~2010
809027001712944432027312 ~2011
80905237191618104743911 ~2008
80905572831618111456711 ~2008
80905642814854338568711 ~2010
80907822116472625768911 ~2010
80914594191618291883911 ~2008
80916980991618339619911 ~2008
80919311631618386232711 ~2008
80922513831618450276711 ~2008
809359910911331038752712 ~2010
80938084191618761683911 ~2008
80939887374856393242311 ~2010
80939913591618798271911 ~2008
809440292321045447599912 ~2011
80946009111618920182311 ~2008
80946096831618921936711 ~2008
80946504231618930084711 ~2008
809469041940473452095112 ~2012
80949349374856960962311 ~2010
80951355374857081322311 ~2010
Home
4.828.532 digits
e-mail
25-06-01