Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
105081448312101628966311 ~2009
105082273336304936399911 ~2010
105082501912101650038311 ~2009
105084695992101693919911 ~2009
105088424992101768499911 ~2009
105106870736306412243911 ~2010
105108896816306533808711 ~2010
105110254192102205083911 ~2009
105111424192102228483911 ~2009
105123403136307404187911 ~2010
105127196992102543939911 ~2009
105127252312102545046311 ~2009
105129160976307749658311 ~2010
105131892416307913544711 ~2010
105132425816307945548711 ~2010
105136969432102739388711 ~2009
105138321592102766431911 ~2009
105142046392102840927911 ~2009
105145882192102917643911 ~2009
105147373192102947463911 ~2009
105154526536309271591911 ~2010
105158835232103176704711 ~2009
105160088032103201760711 ~2009
105165547498413243799311 ~2011
105170141776310208506311 ~2010
Exponent Prime Factor Dig. Year
105174321712103486434311 ~2009
105175024312103500486311 ~2009
105175509712103510194311 ~2009
105179527432103590548711 ~2009
1051813204131554396123112 ~2012
105182414032103648280711 ~2009
105184644712103692894311 ~2009
105192780232103855604711 ~2009
1051987921725247710120912 ~2012
1052032474316832519588912 ~2011
1052042407316832678516912 ~2011
105207991192104159823911 ~2009
105221951992104439039911 ~2009
105222958312104459166311 ~2009
105223746832104474936711 ~2009
105227061776313623706311 ~2010
1052320722116837131553712 ~2011
105233533312104670666311 ~2009
105240416392104808327911 ~2009
105243287392104865747911 ~2009
105253428712105068574311 ~2009
105257593198420607455311 ~2011
105258908278420712661711 ~2011
105259740712105194814311 ~2009
105265725712105314514311 ~2009
Exponent Prime Factor Dig. Year
105267321592105346431911 ~2009
105268862392105377247911 ~2009
105271876378421750109711 ~2011
105283085032105661700711 ~2009
105291285232105825704711 ~2009
105293420392105868407911 ~2009
105302493712106049874311 ~2009
105303602992106072059911 ~2009
105304110616318246636711 ~2010
105304689112106093782311 ~2009
105304761112106095222311 ~2009
105304924912106098498311 ~2009
105309150776318549046311 ~2010
105320192032106403840711 ~2009
105332221312106644426311 ~2009
105333313312106666266311 ~2009
105335702536320142151911 ~2010
105344193536320651611911 ~2010
105348669832106973396711 ~2009
105357208432107144168711 ~2009
105359972032107199440711 ~2009
105363642712107272854311 ~2009
105367128112107342562311 ~2009
105370374778429629981711 ~2011
105373559032107471180711 ~2009
Exponent Prime Factor Dig. Year
105377590912107551818311 ~2009
105384726112107694522311 ~2009
105384739192107694783911 ~2009
105388081936323284915911 ~2010
105390199792107803995911 ~2009
105393447712107868954311 ~2009
1053953587910539535879112 ~2011
105398993992107979879911 ~2009
1053999540716863992651312 ~2011
105401210936324072655911 ~2010
105425258032108505160711 ~2009
105428189392108563787911 ~2009
105439853216326391192711 ~2010
105441540376326492422311 ~2010
105444970912108899418311 ~2009
105446904832108938096711 ~2009
105453681112109073622311 ~2009
105459735232109194704711 ~2009
105460038232109200764711 ~2009
105464500912109290018311 ~2009
105467119432109342388711 ~2009
105483089992109661799911 ~2009
105486111232109722224711 ~2009
105487500712109750014311 ~2009
105489354592109787091911 ~2009
Home
4.724.182 digits
e-mail
25-04-13