Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
112837885312256757706311 ~2010
112840961392256819227911 ~2010
112850160232257003204711 ~2010
112851064192257021283911 ~2010
112855854712257117094311 ~2010
112858164712257163294311 ~2010
112865184232257303684711 ~2010
112865895712257317914311 ~2010
112868757832257375156711 ~2010
112879083013846...48980914 2023
112879243312257584866311 ~2010
112880254312257605086311 ~2010
112893952312257879046311 ~2010
1128954198154189801508912 ~2013
1128968205120321427691912 ~2012
112899077819031926224911 ~2011
112904844536774290671911 ~2011
112904958232258099164711 ~2010
112906481392258129627911 ~2010
112910412112258208242311 ~2010
112912061816774723708711 ~2011
112912227592258244551911 ~2010
112919778832258395576711 ~2010
112921037992258420759911 ~2010
112921302112258426042311 ~2010
Exponent Prime Factor Dig. Year
112927269832258545396711 ~2010
112930880632258617612711 ~2010
112936485112258729702311 ~2010
1129405044118070480705712 ~2012
112940610119035248808911 ~2011
112944617336776677039911 ~2011
112957115512259142310311 ~2010
112968070312259361406311 ~2010
112983984112259679682311 ~2010
1129964383715819501371912 ~2012
112996756976779805418311 ~2011
112998007192259960143911 ~2010
112998403192259968063911 ~2010
1130076984727121847632912 ~2012
113012186999040974959311 ~2011
113016685312260333706311 ~2010
113018575432260371508711 ~2010
113018904592260378091911 ~2010
113019054232260381084711 ~2010
113019911992260398239911 ~2010
113030188936781811335911 ~2011
1130347584711303475847112 ~2011
113035186432260703728711 ~2010
113035842832260716856711 ~2010
113039237512260784750311 ~2010
Exponent Prime Factor Dig. Year
113040051712260801034311 ~2010
113040523792260810475911 ~2010
113040943912260818878311 ~2010
113041378912260827578311 ~2010
113047285312260945706311 ~2010
1130476380720348574852712 ~2012
113051665312261033306311 ~2010
113062974136783778447911 ~2011
113064114112261282282311 ~2010
113065458232261309164711 ~2010
113071427399045714191311 ~2011
113081415112261628302311 ~2010
113085024232261700484711 ~2010
113087736832261754736711 ~2010
113091010192261820203911 ~2010
1130950045911309500459112 ~2011
113098240792261964815911 ~2010
113099532616785971956711 ~2011
113101306312262026126311 ~2010
113102281192262045623911 ~2010
113104278832262085576711 ~2010
113107647112262152942311 ~2010
113108002792262160055911 ~2010
113109355912262187118311 ~2010
113109558232262191164711 ~2010
Exponent Prime Factor Dig. Year
113111254432262225088711 ~2010
113112685192262253703911 ~2010
1131135823920360444830312 ~2012
113120211832262404236711 ~2010
113123792032850...59156114 2024
113129181592262583631911 ~2010
113138664712262773294311 ~2010
113149784632262995692711 ~2010
113153783536789227011911 ~2011
113170379992263407599911 ~2010
113173490512263469810311 ~2010
113179960312263599206311 ~2010
113182868032263657360711 ~2010
1131901863111319018631112 ~2011
113191619392263832387911 ~2010
113209996192264199923911 ~2010
113211117832264222356711 ~2010
1132132067927171169629712 ~2012
113213765512264275310311 ~2010
113214292919057143432911 ~2011
1132146873754343049937712 ~2013
113222273699057781895311 ~2011
113226164992264523299911 ~2010
113234937112264698742311 ~2010
113242756616794565396711 ~2011
Home
4.724.182 digits
e-mail
25-04-13