Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
90503989791810079795911 ~2009
90508726815430523608711 ~2010
90509420511810188410311 ~2009
90516875391810337507911 ~2009
90521170311810423406311 ~2009
905234059314483744948912 ~2011
90523524111810470482311 ~2009
90527707191810554143911 ~2009
90532930311810658606311 ~2009
90541722919054172291111 ~2010
90544680117243574408911 ~2010
90546991191810939823911 ~2009
90551750391811035007911 ~2009
90553103991811062079911 ~2009
90554458911811089178311 ~2009
90561306231811226124711 ~2009
90561810831811236216711 ~2009
90564661639056466163111 ~2010
90568250511811365010311 ~2009
90572098015434325880711 ~2010
90574880575434492834311 ~2010
90578420991811568419911 ~2009
90585255231811705104711 ~2009
90586712991811734259911 ~2009
90588751791811775035911 ~2009
Exponent Prime Factor Dig. Year
905920153123553923980712 ~2012
90593359911811867198311 ~2009
90596620917247729672911 ~2010
906038729921744929517712 ~2011
90608574735436514483911 ~2010
90608818077248705445711 ~2010
90609259431812185188711 ~2009
90610563591812211271911 ~2009
90613663431812273268711 ~2009
90619359231812387184711 ~2009
906213388919936694555912 ~2011
90623275911812465518311 ~2009
90625108377250008669711 ~2010
90630558735437833523911 ~2010
90631615311812632306311 ~2009
90634912911812698258311 ~2009
906455555943509866683312 ~2012
90649209711812984194311 ~2009
906497623129007923939312 ~2012
906503524723569091642312 ~2012
90652969911813059398311 ~2009
90658524231813170484711 ~2009
90661402317252912184911 ~2010
90668915935440134955911 ~2010
90672048897253763911311 ~2010
Exponent Prime Factor Dig. Year
90672687831813453756711 ~2009
906739561965285248456912 ~2013
90676704711813534094311 ~2009
90677913711813558274311 ~2009
906796849319949530684712 ~2011
90680613711813612274311 ~2009
90682758231813655164711 ~2009
90683220775440993246311 ~2010
90686817717254945416911 ~2010
90687789231813755784711 ~2009
90691438791813828775911 ~2009
90696287031813925740711 ~2009
906990445129023694243312 ~2012
90702952311814059046311 ~2009
90704012391814080247911 ~2009
90706988391814139767911 ~2009
90708453831814169076711 ~2009
90715123191814302463911 ~2009
90723463791814469275911 ~2009
90729417231814588344711 ~2009
90734819335444089159911 ~2010
90735965175444157910311 ~2010
90738407391814768147911 ~2009
90739773231814795464711 ~2009
90741446031814828920711 ~2009
Exponent Prime Factor Dig. Year
90745963399074596339111 ~2010
90746068039074606803111 ~2010
90754032231815080644711 ~2009
90758195415445491724711 ~2010
90767653311815353066311 ~2009
90771577791815431555911 ~2009
90774246175446454770311 ~2010
90781466391815629327911 ~2009
90783315111815666302311 ~2009
90786227391815724547911 ~2009
90789632511815792650311 ~2009
90793318191815866363911 ~2009
90796553391815931067911 ~2009
90797957577263836605711 ~2010
90798151815447889108711 ~2010
90800236191816004723911 ~2009
90801102831816022056711 ~2009
90803648719080364871111 ~2010
90810036439081003643111 ~2010
90810771711816215434311 ~2009
90818394111816367882311 ~2009
90819824391816396487911 ~2009
90820890831816417816711 ~2009
90821036031816420720711 ~2009
90822329697265786375311 ~2010
Home
4.828.532 digits
e-mail
25-06-01